

C 1	ontent Intro	iS duction	3
2		munication	
_	2.1	UART settings	
	2.2	Connection viewer	
	2.3	Communication protocol	
	2.4	Communication modes	
	2.5	Commands overview.	
3		commands	
Ŭ	3.1	·t' command	
	3.2	'S' command	
	3.3	'G' command	
	3.4	'i' command	
	3.5	'r' command	
	3.6	'e' command	
	3.7	'cali' command	
	3.8	'cali clear' command	
	3.9	'cali get' command	
	3.10	'Fmscr' command	
	3.11	'Lmscr' command	
	3.12	's' command (deprecated)	
	3.13	'i' command	
	3.14	'v' command	
	3.15	'dlfw' command	
	3.16	Filebrowser commands	
	3.16.		
	3.16.		
	3.16.		
	3.16.		
	3.16.		
	3.16.		
4		ot execution commands	
•	4.1	'h' command	
	4.2	'H' command	
	4.3	'Z' command	
	4.4	'Y' command	
5		sters	
•	5.1	Peripheral configuration	
	5.2	License register	
	5.3	Device serial	
	5.4	Hardware revision	
	5.5	Autorun	
	٥.٠	· · · · · · · · · · · · · · · · · · ·	

last document update: 24-4-2019

Ę	5.6	Advanced options	15
6	Error	codes	16
7	Versi	ion changes	19

1 Introduction

This document describes the "online" communication protocol of the Emstat Pico. Initial communication with an EmStat Pico is always done using this online communication. Measurements can be started by sending a MethodSCRIPT, more information about MethodSCRIPT can be found here:

http://www.palmsens.com/methodscript

Terminology

PGStat: Potentiostat / Galvanostat

CE: Counter Electrode
RE: Reference Electrode
WE: Working Electrode

Technique: A standard electrochemical technique

Iteration: A single execution of a loop

RAM: Random-Access (volatile) Memory Flash: Flash (non-volatile) memory

SD-card: Internal or external flash memory card

MethodSCRIPT: PalmSens human readable measurement script format

2 Communication

2.1 UART settings

The EmStat Pico communicates using 3.3V UART (Serial Port) with the following settings:

Setting	Value	Description
Signal level	3.3V	
Baudrate	230400	Baud (bps)
Number of data bits	8	
Number of stop bits	1	
Parity	None	
Handshaking	No	No handshaking used

2.2 Connection viewer

PSTrace version 5.6 or higher has a hidden feature, which is useful when the communication protocol is used for development of software for EmStat Pico.

PSTrace will open the 'Connection viewer' window when you double click the "Not connected" label before connecting to the device.

Double click in this area before connecting to open the Connection viewer

The connection viewer window. All information in red is sent from the PC to the device and the green information is sent by device to the device.

2.3 Communication protocol

All commands and responses are terminated with a newline character ('\n' or 0x0A). Commands will echo the first character of the command and then respond with command specific data. When the command has finished executing a newline character is returned. If an error occurs during the execution of a command, the error is returned just before the newline. See section "Error codes" for more information about errors.

2.4 Communication modes

The device can be in two communication modes:

- 1. Idle mode
- 2. Script execution mode

The EmStat Pico is controlled using the following characters or commands (without quotes):

2.5 Commands overview

Idle commands

Command	Description	See section
't'	Get the device firmware version	3.1
'S'	Set register value	3.2
'G'	Get register value	3.3
'1'	Load (parse) MethodSCRIPT to RAM	3.4
ʻr'	Run (execute) loaded MethodSCRIPT	3.5
'e'	Load and execute MethodSCRIPT (same as 'I' followed by 'r')	3.6
"cali"	Calibrate the device	3.7
"cali clear"	Clear calibration data of the device	3.8
"cali get"	Retrieves calibrated value of device	3.9
"Fmscr"	Store loaded MethodSCRIPT to non-volatile (Flash) memory	3.10
"Lmscr"	Retrieve MethodSCRIPT from non-volatile memory to RAM	3.11
's'	Set device into sleep-mode (deprecated)	3.12
ʻi'	Get device serial number	3.13
'V'	Get MethodSCRIPT version	3.14
"dlfw"	Enter bootloader mode. Invalidates current firmware.	3.15
"fs_dir"	Print the content of the directory	3.16.1
"fs_get"	Print the content of a file	3.16.2
"fs_del"	Remove a file or directory (recursively)	3.16.3
"fs_info"	Display SD-card information (free/used/total space)	3.16.4
"fs_format"	Format the SD-card (fs_clear is preferred above fs_format)	3.16.5
"fs_clear"	Removes all files and folders from the SD-card	3.16.6

Table 1; Idle commands

last document update: 24-4-2019

Script execution commands

Command	Description	See section
'h'	Hold execution of the running MethodSCRIPT	4.1
'H'	Resume execution of the halted MethodSCRIPT	4.2
'Z'	Abort execution of the running MethodSCRIPT	4.3
'Y'	Abort current measurement loop	4.4

Table 2; Script execution commands

3 Idle commands

3.1 't' command

Sending "t\n" to the device returns the firmware version of the device.

Note: unlike other commands this command responses with multiple newline ("\n") separated strings terminated by a "*\n"

Example:

Send "t\n". EmStat Pico responds with:

"tespico12#Jun 7 2020 09:37:02\n"

"R*\n"

Decoding

The first character is the echo of the command character 't' followed by

"R*\n

Note that the day is preceded by a space character if it has a single digit and time is preceded by a '0'

espico Emstat Pico identifier

xx represents the firmware version without the decimal point, e.g. when xx = 12, the

firmware version is 1.2.

separator

mmm month in short-form e.g. "Jun"

dd 2 digit day number
yyyy 4 digit year number
hh 2 digit hour number
mm 2 digit minutes number
ss 2 digit seconds number

R Release firmware

*\n End of version command

[&]quot;espicoxx#mmm dd yyyy hh:mm:ss\n"

last document update: 24-4-2019

3.2 'S' command

Sending "Sxxyy..yy\n" to the device sets register xx to value yy..yy.

Where:

xx 2 digit hexadecimal register number

yy..yy Hexadecimal digits representing the value of the register to be set.

The number of digits depends on the register number.

See section "Registers" for detailed information.

3.3 'G' command

Sending "Gxx\n" to the device gets the value of register xx.

Example:

G08 ;Get the value of register 08 (autorun enabled)

Response:

Gyy.yy ;Register 08 has value yy..yy

Where:

xx 2 digit hexadecimal register number

yy..yy Hexadecimal digits representing the value of the register.

The number of digits depends on the register number.

See section "Registers" for detailed information.

3.4 'l' command

Sending "I\n" to the device loads and parses the MethodSCRIPT following the command. The end of the script is indicated by an empty line containing only a "\n" character. If the status of the loading indicates no errors, then the script can be executed by the 'r' command (see section 3.5).

Example (newline ("\n") characters are omitted):

send string "hello world"

3.5 'r' command

Sending "r\n" to the device executes a loaded MethodSCRIPT.

3.6 'e' command

Sending "e\n" to the device loads and parses the MethodSCRIPT following the command, and then executes the script if no errors are returned.

Example (newline ("\n") characters are omitted):

send_string "hello world"

3.7 'cali' command

Sending "cali\n" to the device performs a self-calibration of the device. This can take up to a minute. Note: All electrodes need to be disconnected from the device prior to the command.

3.8 'cali clear' command

Sending "cali clear\n" to the device clears all calibration data. It is not recommended to perform measurements on an uncalibrated device.

last document update: 24-4-2019

3.9 'cali get' command

Sending "cali get 8\n" to the device retrieves the value in Ohms of the RLOAD on the WE of channel 1 in high speed mode. The value is returned as hexadecimal value.

3.10 'Fmscr' command

Sending "Fmscr\n" to the device stores a loaded MethodSCRIPT to non-volatile memory.

3.11 'Lmscr' command

Sending "Lmscr\n" to the device loads a stored MethodSCRIPT from non-volatile memory. It can now be started with the 'r' command.

3.12 's' command (deprecated)

Sending "s\n" to the device brings the device into sleep (hibernate) mode. The device will wake-up when the host sends data (commands) to the device or when the "Wake / GPIO_7" pin is brought low.

Note: This command is deprecated and may be removed in feature releases, use the MethodSCRIPT "hibernate" command instead.

3.13 'i' command

Sending "i\n" to the device gets the device serial number.

Example:

Send "i\n". EmStat Pico responds with:

"iEP1CA8BR"

Decoding

The first character is the echo of the command character 'i' followed by the 8-character serial number.

3.14 'v' command

Sending "v\n" to the device gets the MethodSCRIPT version.

Example:

Send "v\n". EmStat Pico responds with:

"v0003"

Decodina

The first character is the echo of the command character 'v' followed by the 4-digit hexadecimal version number.

3.15 'dlfw' command

Sending "dlfw\n" to the device resets the device in bootloader mode. A side-effect of this command is that the current firmware will be erased, meaning new firmware must always be uploaded after calling this command.

last document update: 24-4-2019

3.16 Filebrowser commands

The EmStat Pico can read and write data from/to an SD-card formatted as a FAT32 filesystem. The filebrowser interface is provided to interact with this storage medium and supports data in ASCII format.

3.16.1 'fs dir' command - show directory

The command "fs_dir PATH\n" prints all names of files and directories in the directory indicated by the parameter PATH. The EmStat Pico will respond with an "f" followed by the lines containing the files/directories. The list is terminated by an empty line. The format for each line is: "DATE TIME;TYPE;NAME". Note that the values of "DATE" and "TIME" are separated using a space and the other field use a semicolon for this purpose.

Example:

The following example prints the names the files/folders in the /measurements directory. "fs_dir /measurements\n"

Output:

f2019-12-31 11:34:13;DIR;0;measurements 2019-12-31 11:34:18;FIL;0;log.txt 2019-12-31 11:34:23;FIL;0;info.txt 2019-12-31 11:34:27;FIL;0;error_codes.csv

3.16.2 'fs_get' command – get file content

The command 'fs_get PATH\n' prints the contents of the requested file. The end of the file is indicated with a file separator character (0x1C).

Example:

The next example returns the content of the file "/measurements/my_lsv_file.data".

"fs_get /measurements/my_lsv_file.data\n"

Output:

f2019-12-31 11:39:26;FIL;150;my_lsv_file.data

v0003

Pda7F9E6A6u;ba51FC060p,10,207 Pda7FB6CFCu;ba5C994C0p,10,207 Pda7FCF353u;ba6731714p,10,207 Pda20B3D38n;ba71CD01Bp,10,207 Pda8000000 ;ba7C6A479p,10,207

Note: the filebrowser does not support the transmission of binary files.

Note2: the EmStat Pico transmits the data as fast as it can and will not wait for the host-system.

3.16.3 'fs del' command - remove file/directory

The command 'fs_del PATH\n' removes the file or directory (recursively) specified by PATH.

Example:

To remove the file "/log.txt" the following command can be used:

"fs_del /log.txt\n"

3.16.4 'fs_info' command – get SD-card information

The command "fs info\n" returns the current used space, free space and SD-card size.

Example:

"fs_info\n"

Output:

"fused:192kB free:7878464kb total:7878656kb"

last document update: 24-4-2019

3.16.5 'fs_format' command - Format SD-card

This command formats the SD-card with the FAT-filesystem. As a side-effect all content of the SD-card is removed.

Example:

"fs_format\n"

Output:

"fFormat successful."

Note: This is not the preferred way to clear an SD-card. For that use the 'fs_clear' command. Note2: The formatting procedure can take some time. It will print "Format successful" when done Warning: this operation cannot be undone, use at your own risk.

3.16.6 'fs_clear' command - remove all files and directories

This command removes all files and directories on the SD-card.

Example:

'fs_clear\n'

Warning: this operation cannot be undone, use at your own risk.

4 Script execution commands

To control the flow of execution of a running MethodSCRIPT, these commands can abort, pause and resume the execution of the script or skip the current command.

4.1 'h' command

Sending "h\n" to the device holds a running MethodSCRIPT

Example:

4.2 'H' command

Sending "H\n" to the device resumes a halted MethodSCRIPT

Example:

4.3 'Z' command

Sending "Z\n" to the device aborts a running MethodSCRIPT. The current iteration of any measurement loop will be completed, then the script execution will jump to the "on_finished:" tag.

Example:

```
e
var c
var p
set_pgstat_mode 2
set_cr 100m
cell_on
meas_loop_lsv p c -1 1 10m 1
pck_start
pck_add p
pck_add c <- sending "Z\n" within the loop will abort the script
and jump to the "on_finished:" tag.
pck_end
endloop
on_finished:
cell_off
```

4.4 'Y' command

Sending "Y\n" to the device breaks the execution of the current MethodSCRIPT loop after the current iteration of the loop has finished.

Example:

last document update: 24-4-2019

5 Registers

The internal registers are used to set and get local settings like serial-number (get only) or autorun enable/disable.

Value	access mode	Description	See section
0x01	Read / Write	Peripheral configuration	5.1
0x04	Read only	License register	5.2
0x04	Read only	Device serial	5.3
0x07	Read only	Hardware revision	5.4
0x08	Read / Write	Autorun enable/disable	5.5
0x09	Read / Write	Advanced options	5.6

5.1 Peripheral configuration

Reads / writes the peripheral configuration as a bitmask from / to non-volatile memory. Support for external peripherals can be enabled here. Pins for peripherals that are not enabled can be used as GPIO pins. All peripherals default to GPIO. Multiple peripherals can be enabled at the same time by adding the hexadecimal values.

Value	Name	Description
	Output 1.8V	When enabled, output 1.8V reference to the
	reference	ANALOG_IN_2 pin. ANALOG_IN_2 can no longer
0x00000020	enable	be used as an input.
	Output cell	When enabled, output cell on/off status on
	on/off status	GPIO6. Cell on outputs a logic 0, cell off output a
0x00000040	enable	logic 1. GPIO6 can no longer be used as GPIO.
	External RTC	When enabled the RTC (S-35390A) will be
	(S-35390A)	initialized after power on. This stops the RTC
	init enable	generating a 1Hz signal from potentially
0x00000080		interfering with the Emstat Pico wake-up signal.
0x00000100	Reserved	
0x80000000		Reserved for future use. Set to 0.

Example

"S010000020\n" sets the peripheral configuration register. This will enable the 1.8V reference.

Response:

S\n

Where:

S = echo of 'S' command \n = End of command

5.2 License register

Contains the licenses programmed into this EmStat Pico. For more information contact PalmSens.

Example

"G04\n" gets the license register.

Response:

last document update: 24-4-2019

Where:

G = echo of 'G' command

xxxxxxxxxxxxxx = 16 hexadecimal digit license code

\n = End of command

5.3 Device serial

Contains the device serial number.

Example

"G06\n" gets the serial number of the device.

Response:

Gttyybbbbnnnnnnn\n

Where:

G = echo of 'G' command

tt = Device type, hexadecimal representation yy = Year, hexadecimal representation bbbb = Batch nr, hexadecimal representation.

nnnnnnn = Device ID, hexadecimal representation. Unique within all devices of the same type,

year and batch.

\n = End of command

5.4 Hardware revision

Contains the hardware revision version.

Example

"G07\n" gets the hardware revision of the device.

Response:

Gxx\n

Where:

G = echo of 'G' command

xx = 2 hexadecimal digit serial number

\n = End of command

5.5 Autorun

Contains the autorun setting. If set to 1, the MethodSCRIPT stored in non-volatile memory will be loaded and executed on startup. When the script ends, the EmStat Pico returns to its normal behavior.

Example

"S0801\n" sets the autorun register to 01 (autorun enabled)

Response:

S\n

Where:

S = echo of 'S' command \n = End of command

last document update: 24-4-2019

5.6 Advanced options

Contains the advanced option setting bitmask. The only option currently available is the "extended voltage range" option. Enabling this reduces the accuracy of measured currents and is not recommended. To enable it write "00000001" to this register. Write "00000000" to disable it.

Example

"S090000001\n" will enable the "extended voltage range" option.

Response:

S∖n

last document update: 24-4-2019

6 Error codes

After sending a command to the device, the device may respond with an error. When loading or executing MethodSCRIPT the device may respond with specific MethodSCRIPT errors described in "MethodSCRIPT v1_2.pdf".

See https://embed.palmsens.com/knowledgebase/methodscript-documentation/

The errors applicable to online communication (non-MethodSCRIPT) are highlighted in yellow.

Online communication error format:

c!XXXX\n

Where:

c = Echo of the first character of the command XXXX = The error code, see "Table 3; Error codes"

Code (Hex)	Name	Description
0001	STATUS ERR	An unspecified error has occurred
0002	STATUS_INVALID_VT	An invalid Value Type has been used
0003	STATUS_UNKNOWN_CMD	The command was not recognized
0004	STATUS_REG_UNKNOWN	Unknown Register
0005	STATUS_REG_READ_ONLY	Register is read-only
0006	STATUS_WRONG_COMM_MODE	Communication mode invalid
0007	STATUS_BAD_ARG	An argument has an unexpected value
0008	STATUS_CMD_BUFF_OVERFLOW	Command exceeds maximum length
0009	STATUS_CMD_TIMEOUT	The command has timed out
000A	STATUS_REF_ARG_OUT_OF_RANGE	A var has a wrong identifier
000B	STATUS_OUT_OF_VAR_MEM	Cannot reserve the memory needed for this var
000C	STATUS_NO_SCRIPT_LOADED	Cannot run a script without loading one first
000D	STATUS INVALID TIME	The given (or calculated) time value is invalid
0002	017(100_11(V)(LID_11(V)L	for this command
000E	STATUS_OVERFLOW	An overflow has occurred while averaging a
		measured value
000F	STATUS_INVALID_POTENTIAL	The given potential is not valid
0010	STATUS_INVALID_BITVAL	A variable has become either "NaN" or "inf"
0011	STATUS_INVALID_FREQUENCY	The input frequency is invalid
0012	STATUS_INVALID_AMPLITUDE	The input amplitude is invalid
0013	STATUS_NVM_ADDR_OUT_OF_RANGE	Non-volatile Memory address invalid
0014	STATUS_OCP_CELL_ON_NOT_ALLOWED	Cannot perform OCP measurement when
		cell on
0015	STATUS_INVALID_CRC	CRC invalid
0016	STATUS_FLASH_ERROR	An error has occurred while reading / writing flash
0017	STATUS_INVALID_FLASH_ADDR	An error has occurred while reading / writing flash
0018	STATUS_SETTINGS_CORRUPT	The device settings have been corrupted
0019	STATUS AUTH ERR	Authentication error
001A	STATUS CALIBRATION INVALID	Calibration invalid
001B	STATUS_NOT_SUPPORTED	This command or part of this command is
		not supported by the current device
001C	STATUS_NEGATIVE_ESTEP	Step Potential cannot be negative for this
		technique
001D	STATUS_NEGATIVE_EPULSE	Pulse Potential cannot be negative for this

7FFF	STATUS_FATAL_ERROR	A fatal error has occurred, the device must be reset
4016	STATUS_WAKEUP_TIME_INVALID	RTC was selected as wake-up source with invalid time argument
4015	STATUS_INVALID_WAKEUP_SOURCE	The selected (combination of) wake-up source is invalid
		hex or binary representation
4014	STATUS_SCRIPT_HEX_OR_BIN_FLT	hardware Non integer SI vars cannot be parsed from
4012	STATUS_SCRIPT_I2C_ERR STATUS_SCRIPT_I2C_INVALID_CLOCK	I2C clock frequency not supported by
4011		Something unexpected went wrong with I2C.
4010 4011	STATUS_SCRIPT_I2C_NOT_CONFIGURED STATUS SCRIPT I2C UNHANDLED NACK	I2C interface was not initialized NAck flag not handled by script
	STATUS_SCRIPT_INDEX_OUT_OF_RANGE	Array index out of bounds
400F		depth. (for example "if" directly followed by an "endif" statement)
400E	STATUS SCRIPT INVALID SCOPE	The command had an invalid effect on scope
400D	STATUS_SCRIPT_MAX_SCOPE_DEPTH	Scope depth too large
400C	STATUS_SCRIPT_UNEXPECTED_CMD	other measurement loops Command not supported in current situation
400B	STATUS_SCRIPT_NESTED_MEAS_LOOP	for this command Measurement loops cannot be placed inside
400A	STATUS SCRIPT INVALID DATATYPE	firmware version and cannot be run The parameter datatype (float/int) is not valid
4009	STATUS_SCRIPT_INVALID_VERSION	command The stored script is generated for an older
4008	STATUS_SCRIPT_INVALID_OPT_ARG	This optional argument is not valid for this
4007	STATUS_SCRIPT_VAR_UNDEFINED	The variable has not been declared
4005	STATUS_SCRIPT_UNKNOWN_VAR_TYPE	memory The variable type specified is unknown
4004	STATUS_SCRIPT_ONEXPECTED_CHAR STATUS_SCRIPT_OUT_OF_CMD_MEM	The script is too large for the internal script
4003	STATUS_SCRIPT_ARG_OUT_OF_RANGE STATUS_SCRIPT_UNEXPECTED_CHAR	An unexpected character was encountered
4002	STATUS_SCRIPT_BAD_ARG STATUS_SCRIPT_ARG_OUT_OF_RANGE	An argument was invalid for this command An argument was out of range
4001	STATUS_SCRIPT_UNKNOWN_CMD STATUS_SCRIPT_BAD_ARG	The script command is unknown An argument was invalid for this command
4000 4001	STATUS_SCRIPT_SYNTAX_ERR STATUS_SCRIPT_UNKNOWN_CMD	The script command is unknown
4000	STATUS SCRIPT SYNTAX ERR	selected operation
002A	STATUS_WRONG_GPIO_CFG	GPIO configuration is incompatible with the
0029	STATUS_UNKNOWN_GPIO_CFG	GPIO pin mode is not known by the device
0028	STATUS_ZERO_DIV	Variable devided by zero
5521		already exists
0020	STATUS_FILE_EXX	Cannot open file, a file with this name
0025	STATUS_UNKNOWN_PAD_MODE	The specified PAD mode is unknown An error has occurred during a file operation
0025	STATUS_UNKNOWN_PAD_MODE	has been exceeded
0024	STATUS_TOO_MANY_EXTRA_VARS	mode The maximum number of vars to measure
0023	STATUS_INVALID_FOR_PGSTAT_MODE	configured as Poly WE Command is invalid for the selected PGStat
0022	STATUS_CHANNEL_NOT_POLY_WE	Channel set to be used as Poly WE is not
0021	STATUS_UNKNOWN_PGS_MODE	The specified PGStat mode is not supported
0020	_	Cannot have more than one high speed and/or max range mode enabled (EmStat Pico)
001F	STATUS_TECH_NOT_LICENCED STATUS MULTIPLE HS	Product is not licenced for this technique
001E	STATUS_NEGATIVE_EAMP	Amplitude cannot be negative for this technique
- · · -	0TATUS NEGATIVE TOOLS	technique

EmStat Pico communication protocol V1.2 last document update: 24-4-2019

8000	STATUS_DEVICE_SPECIFIC	Device specific error occurred
8001	STATUS_DS_SELFTEST_CRYSTAL	Switching to 16 MHz crystal failed

Table 3; Error codes

EmStat Pico communication protocol V1.2 last document update: 24-4-2019

7 Version changes

Version 1.2

- Added filebrowser commands
- Updated error codes table
- Added extra registers

