
Rev. 26

MethodSCRIPT v1.0

Page | 2

MethodSCRIPT v1.0
last document update: 22-3-2019

Contents
1 Introduction ... 4

2 Features .. 5

2.1 Release features ... 5

2.2 Planned future features .. 5

2.3 Supported devices ... 5

3 Script format ... 6

4 MethodSCRIPT variables .. 6

4.1 Script command variables .. 6

4.2 Measurement data package variables .. 7

5 Interpreting measurement data packages ... 8

5.1 Package format .. 8

5.2 Variable sub package format .. 8

5.3 Package parsing example .. 9

6 Measurement loop commands ... 9

6.1 Measurement loop example ... 9

7 Variable Types .. 10

8 Script parameter types .. 11

8.1 var .. 11

8.2 literal .. 11

8.3 var_type ... 11

8.4 integer (int8, int16, int32, uint8, uint16, uint32) ... 11

8.5 comparator .. 11

8.6 string .. 11

9 Script commands ... 11

9.1 var .. 11

9.2 store_var .. 11

9.3 copy_var .. 12

9.4 add_var .. 12

9.5 sub_var .. 12

9.6 mul_var .. 13

9.7 div_var.. 13

9.8 set_e .. 13

9.9 wait .. 13

9.10 loop .. 14

9.11 endloop .. 14

9.12 meas .. 14

9.13 meas_loop_lsv ... 15

9.14 meas_loop_cv .. 15

9.15 meas_loop_dpv .. 16

Page | 3

MethodSCRIPT v1.0
last document update: 22-3-2019

9.16 meas_loop_swv ... 17

9.17 meas_loop_npv .. 17

9.18 meas_loop_ca .. 18

9.19 meas_loop_ocp .. 19

9.20 meas_loop_eis ... 19

9.21 on_finished: .. 20

9.22 set_autoranging ... 20

9.23 pck_start .. 21

9.24 pck_add ... 21

9.25 pck_end ... 21

9.26 set_max_bandwidth ... 21

9.27 set_cr ... 22

9.28 cell_on .. 22

9.29 cell_off .. 22

9.30 set_pgstat_mode ... 22

9.31 send_string .. 23

9.32 set_gpio ... 23

9.33 set_pot_range .. 23

9.34 set_pgstat_chan ... 25

10 PGStat Modes ... 26

10.1 PGStat mode off .. 26

10.2 PGStat mode low speed .. 26

10.3 PGStat mode high speed ... 26

11 Script examples ... 27

11.1.1 EIS example ... 27

11.1.2 LSV example .. 28

11.1.3 SWV example ... 29

12 Device specific information ... 30

12.1 PGStat mode properties .. 30

12.2 Current ranges ... 31

12.3 Other device specific properties ... 31

Page | 4

MethodSCRIPT v1.0
last document update: 22-3-2019

1 Introduction

The MethodSCRIPT scripting language is designed to improve the flexibility of the PalmSens potentiostat
and galvanostat devices for OEM users. It allows users to start measurements with parameters that are
similar to the parameters in PSTrace.

PalmSens provides libraries and examples for handling low level communication with the EmStat Pico
and generating scripts for supported devices.

Terminology
PGStat: Potentiostat / Galvanostat
CE: Counter Electrode
RE: Reference Electrode
WE: Working Electrode
RHS: Right hand side
LHS: Left hand side
Technique: A standard electrochemical technique
Iteration: A single execution of a loop

Page | 5

MethodSCRIPT v1.0
last document update: 22-3-2019

2 Features

2.1 Release features

 Measurements can be tested in PSTrace and then exported to MethodSCRIPT. This allows for
convenient testing of different measurements in PSTrace. The resulting MethodSCRIPT can then
be easily imported as a text file and executed from within the user application.

 Support for the following electrochemical techniques:
o Linear Sweep Voltammetry (LSV)
o Cyclic Voltammetry (CV)
o Differential Pulse Voltammetry (DPV)
o Square Wave Voltammetry (SWV)
o Normal Pulse Voltammetry (NPV)
o Chronoamperometry (CA)
o Open Circuit Potentiometry (OCP)
o Electrochemical Impedance Spectroscopy (EIS)

 Different measurements can be chained after one another in the same script, making it possible
to combine multiple measurements without communication overhead.

 Variables can be stored and referenced to from within the script.
 Up to 26 variables can be declared. This enables temporary storage of measurement data to be

sent later.
 Simple math can be performed on variables (add,sub,mul,div).
 Support for loops.
 Support for user code during a measurement step.
 Exact timing control.
 Scripts will be verified for syntax and whether or not they can be executed by the EmStat Pico. If

there is an error, the location of the error will be communicated.

2.2 Planned future features

 Low power modes (sleep, hibernate) (already available outside of script).
 Storing of measuring data to an SD card (if SD card is available).
 Autorun script at certain time intervals or at start up.
 In script support for an external RTC (if RTC is available).
 Conditional statements (if, else, elseif, endif)
 Checksum for measurement data packages to check their validity.
 Variables can also be declared as arrays. Up to 4000 variables can be used. This allows for fast

burst measurements that are not slowed down by communication.

2.3 Supported devices

 EmStat Pico

Page | 6

MethodSCRIPT v1.0
last document update: 22-3-2019

3 Script format

The script consists of a series of pre-defined commands. Each command starts with the command
string, followed by a pre-defined number of arguments. Arguments are separated by a ‘ ‘ (space)
character. Each command is terminated by a ‘\n’ character. The ‘\n’ is omitted in most examples. Each
line is limited to a maximum of 128 characters. Comments can be added by having the first character on
the line be ‘#’. Tabs and other extra whitespace besides argument separators are not allowed.

To send a script to the device, first send “e\n”. This sets the device into MethodSCRIPT mode. To
terminate the script, add a line containing only a ‘\n’.

The following example shows a short script that simply declares a variable, including the ‘\n’ characters:

4 MethodSCRIPT variables

MethodSCRIPT variables are represented by a 28 bit integer number with a SI prefix from “
Table 1: SI prefix conversion table”. Only SI prefixes available in this table can be used. A variable with a
value of “100” and a prefix of “m” translates to a floating point value of 0.1. Variables are not explicitly
linked to a unit; instead the unit is implied by the associated “Variable Type”. Refer to section “Variable
Types” for more information. Representation of MethodSCRIPT variables changes depending on whether
the variable is part of a script command or part of a measurement data package.

Table 1: SI prefix conversion table

4.1 Script command variables

MethodSCRIPT variables that are part of the MethodSCRIPT sent to the device are represented as a
signed integer followed by a prefix. For example, a value of -0.01 would be represented as “-10m”.

SI prefix Text Factor

 'a' atto 10^-18

 'f' femto 10^-15

 'p' pico 10^-12

 'n' nano 10^-9

 'u' micro 10^-6

 'm' milli 10^-3

 ' ' none 10^0

 'k' kilo 10^3

 'M' Mega 10^6

 'G' Giga 10^9

 'T' Tera 10^12

 'P' Peta 10^15

 'E' Exa 10^18

e\n
#This is a comment\n
var a\n
\n

Page | 7

MethodSCRIPT v1.0
last document update: 22-3-2019

4.2 Measurement data package variables

MethodSCRIPT variables that are part of a measurement data package are represented as 28 bit
unsigned hexadecimal values with an offset of 0x8000000 (2^27). Each variable has one of the SI
prefixes shown in Table 1: SI prefix conversion table.

This format looks as follows:

Where:

 = Hexadecimal value. HHHHHHH

p = Prefix character.

For example, a value of 0.01 would be represented as “800000Am” and a value of -0.01 would be
represented as “7FFFFF6m”. PalmSens provides source code examples that showcase how to parse
measurement data.

To convert a MethodSCRIPT variable to a floating point value, the following pseudocode can be used:

To convert a floating point value to a MethodSCRIPT variable, the following pseudocode can be used:

Most programming languages have a built in way of converting a HEX string to an integer. The function
SIFactorFromPrefix can use a hash table lookup or a switch case to translate the prefix character to its
corresponding factor.

HHHHHHHp

(HexToUint32(HHHHHHH) - 2^27) * SIFactorFromPrefix(p)

Uint32ToHex(value) / SIFactorFromPrefix(p) + 2^27

Page | 8

MethodSCRIPT v1.0
last document update: 22-3-2019

5 Interpreting measurement data packages

5.1 Package format

Measurement packages consist of a header, followed by any amount of “variable” packages (each with
their own “variable type”), followed by a terminating ‘\n’ character. “Table 2: Measurement data package
format” shows this format. Section “Variable sub package format” explains the format of the variable
fields.

Header Var 1 Var separator Var 2 Var separator Var X Term

P Variable ; Variable ; Variable \n

Table 2: Measurement data package format

5.2 Variable sub package format

The format for a variable sub package is:

Var 1 Var 1 metadata 1 Var 1 metadata X

ttHHHHHHHp ,MV..V ,MV..V

Table 3: Variable sub package format

Where:
tt = Variable Type, represented as a base26 identifier that ranges from “aa” to “zz”.

Variable Types are always lower case. See section “Variable Types” for more
information.

HHHHHHHp = MethodSCRIPT package variable. See section “Measurement data package variables”
for more information.

, = Metadata separator.
M = Metadata type ID, see “Table 4: Metadata types”.
V..V = Metadata value as a hexadecimal value, length is determined by metadata type.

Metadata fields contain extra information about the variable. Each variable can have multiple metadata
fields. See “Table 4: Metadata types” for the possible metadata types.

ID Name Length Content

1 Status 1 0 = OK
2 = overload (>95% of max ADC value)
4 = underload (<2% of max ADC value)
8 = overload warning (>80% of max ADC value)

If an overload or underload is detected, the measured data can be unreliable.

2 Current
range

2 Index of current range (device specific, see “Current ranges”). This current
range is just intended for diagnostic purposes, and is not used in any
calculations during parsing.

Table 4: Metadata types

Page | 9

MethodSCRIPT v1.0
last document update: 22-3-2019

5.3 Package parsing example

An EmStat Pico sends the following measurement data package:

This package contains two variables: “ ” and “ ”. da8000800u ba8000800u,10,201

The package “da8000800u” can be broken down as follows:

  The Variable Type is “da”, this is variable type "VT_CELL_POTENTIAL”.
  The value is “08000800 – 0x8000000” = 0x800 = 2048. The prefix is “u” which stands for

“micro”. This makes the final value 2048 uV (or 2.048 mV).
  This variable has no metadata.

The package “ba8000800u,10,201” can be broken down as follows:

  VT_CURRENT_WEThe Variable Type is “ba”, this corresponds to Variable Type " ”.
  The value is “08000800 – 0x8000000” = 0x800 = 2048. The prefix is “u” which stands for

“micro”. This makes the final value 2048 uA (or 2.048 mA).
 This variable has two metadata packages, the first has an ID of “1” and a value of 0, indicating it

is a status package with the value “OK”. The second metadata package has an ID of “2” and a
value of 01. This indicates that it is a current range with the current range “1”. For the EmStat

1.95 uA” current range. This current range is just for diagnostic Pico, this refers to the “
purposes, and is not used in any calculations during parsing.

6 Measurement loop commands

All techniques are implemented as “measurement loop commands”. This means that the command will
execute one iteration of the measurement technique. After this, all MethodSCRIPT commands within the
measurement loop are executed. When all commands have been executed, the device waits for the
correct timing to start the next iteration of the measurement technique and the process begins again for
the next iteration.

It is possible that the script steps in the loop take more time than is available between each iteration. If
this happens, the next measurement iteration is delayed. It is the responsibility of the user to ensure there
is enough time between measurement iterations to execute the user commands in the loop.

6.1 Measurement loop example

The following example shows a typical Chronoamperometry measurement loop :

Pda8000800u;ba8000800u,10,201\n

#Run a measurement loop for the Chronoamperometry technique
meas_loop_ca p c 100m 100m 2
#These user commands are executed after one measurement
#iteration has been done
pck_start
pck_add p
pck_add c
pck_end
#At “end loop”, the script execution halts until it is time for the next
#measurement loop iteration
end_loop

Page | 10

MethodSCRIPT v1.0
last document update: 22-3-2019

7 Variable Types

Variable Types offer context to MethodSCRIPT variables. They communicate the unit and the origin of
the variable. They are also used as a parameter to some functions to measure a specific type of variable.
For example, when the “meas” command is used, the type of variable to measure must be passed as a
parameter. Table 5: Variable Types shows the available variable types.

Measurable types ID Description

VT_UNKNOWN aa Unknown (not initialized)

VT_POTENTIAL_RE ab Measured RE voltage

VT_POTENTIAL_CE ac Measured CE voltage

VT_POTENTIAL_WE ad Measured WE voltage

VT_POTENTIAL _AUX1_IN as Measured aux1 voltage

VT_POTENTIAL_AUX2_IN at Measured aux2 voltage

VT_CURRENT_WE ba Measured WE current

VT_PHASE cp Measured phase

VT_IMP ci Measured impedance

VT_ZREAL cc Measured real part of complex impedance

VT_ZIMAG cd Measured imaginary part of complex impedance

Appliable types ID Description

VT_CELL_POTENTIAL da Set control value for cell potential

VT_CELL_CURRENT db Set control value for cell current

VT_CELL_FREQUENCY dc Set value for frequency

VT_CELL_AMPLITUDE dd Set value for ac amplitude
Generic types (reserved for

user)

ID Description

VT_CURRENT_GENERIC1 ha

VT_CURRENT_GENERIC2 hb

VT_CURRENT_GENERIC3 hc

VT_CURRENT_GENERIC4 hd

VT_POTENTIAL_GENERIC1 ia

VT_POTENTIAL_GENERIC2 ib

VT_POTENTIAL_GENERIC3 ic

VT_POTENTIAL_GENERIC4 id

VT_MISC_GENERIC1 ja

VT_MISC_GENERIC2 jb

VT_MISC_GENERIC3 jc

VT_MISC_GENERIC4 jd

Table 5: Variable Types

Page | 11

MethodSCRIPT v1.0
last document update: 22-3-2019

8 Script parameter types

8.1 var

The parameter “var” is a reference to a MethodSCRIPT variable. Variables can be changed during
runtime.

8.2 literal

A literal is a constant value parameter, it cannot change during runtime.

8.3 var_type

See section “Variable Types”.

8.4 integer (int8, int16, int32, uint8, uint16, uint32)

These are integer constants, these cannot be changed and do not accept SI prefixes.

8.5 comparator

Comparator operator for Boolean logic, these include:
 The equals operator “==”
 The not equals operator “!=”
 The greater than operator “>”
 The greater than or equal to operator “>=”
 The smaller than operator “<”
 The smaller than or equal to operator “<=”

8.6 string

A string constant.

9 Script commands

9.1 var

Declare a variable. All variables must be declared before use. Currently only names that consist of 1
lower case character are allowed.

Arguments

Name Type

Variable name var Variable reference (a-z).

Example

Declare variable with name “a”.

9.2 store_var

Store a value in a variable. This value can be referenced in following commands.

var a

Page | 12

MethodSCRIPT v1.0
last document update: 22-3-2019

Arguments

Name Type

Variable name var Variable reference.

Value literal Literal value to store in the variable.

Variable Type var_type The type identifier for this value, see section “Variable Types”.

Example

Store a value of 200 in the variable ‘i’. This value is of type: “VT_MISC_GENERIC1”.

9.3 copy_var

Copies value from the source address to the destination address.

Arguments

Name Type

Source variable var Variable reference to copy from.

Destination variable var Variable reference to copy to.

Example

Copies the variable ‘i‘ to ‘j‘.

9.4 add_var

Add “lhs” to “rhs” and store the result in “lhs”. Metadata of lhs is maintained.

Arguments

Name Type

Lhs var The lhs variable, the result is stored here.

Rhs var / literal Literal or variable to add to lhs var.

Example

Adds 1 to variable ‘i’ and stores it to ‘i’.

9.5 sub_var

Subtract “rhs” from “lhs” and store the result in “lhs”. Metadata of lhs is maintained.

Arguments

Name Type

Lhs var The lhs variable, the result is stored here.

Rhs var / literal Literal or variable to subtract from lhs var.

Example

Subtracts 1 from the variable ‘i’ and stores it to ‘i’

store_var i 200 ja

copy_var i j

 add_var i 1

sub_var i 1

Page | 13

MethodSCRIPT v1.0
last document update: 22-3-2019

9.6 mul_var

Multiply “lhs” with “rhs” and store the result in “lhs”. Metadata of lhs is maintained.

Arguments

Name Type

Lhs var The lhs variable, the result is stored here.

Rhs var / literal Literal or variable to multiply lhs by.

Example

Multiplies the variable ‘i’ with 1.5 and stores it to ‘i’

9.7 div_var

Divide “lhs” by “rhs” and store the result in “lhs”. Metadata of lhs is maintained.

Arguments

Name Type

Lhs var The lhs variable, the result is stored here.

Rhs var / literal Literal or variable to divide lhs by.

Example

Divides the variable ‘i’ by 1.5 and stores it to ‘i’

9.8 set_e

Apply a variable or literal as the cell potential. This determines the potential (WE vs RE). The potential is
limited by the potential range of the currently active “pgstat mode” see section “PGStat mode
properties”.

Arguments

Name Type

Potential var / literal The cell potential to apply in volts.

Example

Sets control value for the potentiostat loop to 0.1V.

9.9 wait

Wait for the specified amount of time.

Arguments

Name Type

Time var / literal The amount of time to wait in seconds.

Example

Wait 100 milliseconds.

mul_var i 1500m

div var i 1500m

set_e 100m

wait 100m

Page | 14

MethodSCRIPT v1.0
last document update: 22-3-2019

9.10 loop

Repeat all commands up to the next “endloop” until the specified condition is matched. All loops must
be terminated with an “endloop”.

Arguments

Name Type

Stop condition
lhs

var / literal Literal or variable to be compared with the rhs variable.

Stop condition
comparator

comparator Literal value to store in the variable.

Stop condition
rhs

var / literal Literal or variable to be compared with the lhs variable.

Example

Add 1 to i until variable “i” reaches 10.

9.11 endloop

Signals the end of a loop, see “loop” command.

Arguments

No arguments.

9.12 meas

Measure a datapoint of the specified type and store the result as a variable. The datapoint will be
averaged for the specified amount of time at the maximum available sampling rate.

Arguments

Name Type

Time to measure var / literal The amount of time to spend averaging measured data.

Destination var Variable to store the measured data in.

Var type var_type The type of variable to measure, see section “Variable Types”.

Example

Measure the signal with the var_type: ba (VT_CURRENT_WE) for 100ms and store the result in the
variable ‘c’.

var i
store_var i 0 aa
loop i < 10
add i 1
endloop

 meas 100m c ba

Page | 15

MethodSCRIPT v1.0
last document update: 22-3-2019

9.13 meas_loop_lsv

Perform a Linear Sweep Voltammetry (LSV) measurement and store the resulting current in a variable. An
LSV measurement scans a potential range in small steps and measures the current at each step.

This is a measurement loop function and needs to be terminated with an command. Refer to end_loop

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var Output variable to store the set potential for this iteration.

Output current var Output variable to store the measured current in.

Begin potential var / literal The begin potential for the LSV technique.

End potential var / literal The end potential for the LSV technique.

Step potential var / literal The potential increase for each step. Affects the amount of data
points per second, together with the scan rate. This is an absolute
step. The direction of the scan is determined by “Begin potential”
and “End potential”.

Scan rate var / literal The scan rate of the LSV technique. This is the speed at which the
applied potential is ramped in V/s. Can only be positive.

Example

Perform an LSV measurement and send a data packet for every iteration. The data packet contains the
set potential and measured current. The LSV performs a potential scan from -500 mV to 500 mV with
steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per
second.

9.14 meas_loop_cv

Perform a Cyclic Voltammetry (CV) measurement. In a CV measurement, the potential is stepped from
the begin potential to the vertex 1 potential, then the direction is reversed and the potential is stepped to
the vertex 2 potential and finally the direction is reversed again and the potential is stepped back to the
begin potential. The current is measured at each step.

This is a measurement loop function and needs to be terminated with an command. Refer to end_loop

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var Output variable to store the set potential for this iteration.

Output current var Output variable to store the measured current in.

Begin potential var / literal The begin potential for the CV technique.

Vertex 1 potential var / literal The vertex 1 potential. First potential where direction reverses.

Vertex 2 potential var / literal The vertex 2 potential. Second potential where direction reverses.

Step potential var / literal The potential increase for each step. Affects the amount of data
points per second, together with the scan rate. This is an absolute
step that does not affect the direction of the scan.

Scan rate var / literal The scan rate of the CV technique. This is the speed at which the

meas_loop_lsv p c -500m 500m 10m 100m
pck_start
pck_add p
pck_add c
pck_end
end_loop

Page | 16

MethodSCRIPT v1.0
last document update: 22-3-2019

applied potential is ramped in V/s. Can only be positive.

Example

Perform a CV measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. The CV performs a potential scan from 0 mV to 500 mV to -500 mV to 0
mV. The steps of 10 mV at a rate of 100 mV/s. This results in a total of 201 data points at a rate of 10
points per second.

9.15 meas_loop_dpv

Perform a Differential Pulse Voltammetry (DPV) measurement. In a DPV measurement, the potential is
stepped from the begin potential to the end potential. At each step, the current (reverse current) is
measured, then a potential pulse is applied and the current (forward current) is measured. The forward
current minus the reverse current is stored in the “Output current” variable.

This is a measurement loop function and needs to be terminated with an command. Refer to end_loop

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var Output variable to store the set potential for this iteration.

Output current var Output variable to store “forward current – reverse current” in.
Begin potential var / literal The begin potential for the potential scan.

End potential var / literal The end potential for the potential scan.

Step potential var / literal The potential increase for each step. Affects the amount of data
points per second, together with the scan rate. This is an absolute
step that does not affect the direction of the scan.

Pulse potential var / literal The potential of the pulse. This is added to the currently applied
potential during a step.

Pulse time var / literal The time the pulse should be applied.

Scan rate var / literal The speed at which the applied potential is ramped in V/s. Can
only be positive. Scan rate must be lower than “Step potential /
Pulse time / 2”.

Example

Perform a DPV measurement and send a data packet for every iteration. The data packet contains the
set potential and “forward current – reverse current”. The DPV performs a potential scan from -500 mV
to 500 mV with steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of
10 points per second. At every step a pulse of 20mV is applied for 5ms

meas_loop_cv p c 0 500m -500m 10m 100m
pck_start
pck_add p
pck_add c
pck_end
end_loop

meas_loop_dpv p c -500m 500m 10m 20m 5m 100m
pck_start
pck_add p
pck_add c
pck_end
end_loop

Page | 17

MethodSCRIPT v1.0
last document update: 22-3-2019

9.16 meas_loop_swv

Perform a Square Wave Voltammetry (SWV) measurement. In a SWV measurement, the potential is
stepped from the begin potential to the end potential. At each step, the current (reverse current) is
measured, then a potential pulse is applied and the current (forward current) is measured. The forward
current minus the reverse current is stored in the “Output current” variable. The pulse length is “1 /
Frequency / 2”.

This is a measurement loop function and needs to be terminated with an command. Refer to end_loop

section “Measurement loop” for more information.

Arguments

Name Type

Output
potential

var Output variable to store the set potential for this iteration.

Output current var Output variable to store “forward current – reverse current” in.
Output forward
current

var Output variable to store forward current in.

Output reverse
current

var Output variable to store reverse current in.

Begin potential var / literal The begin potential for the potential scan.

End potential var / literal The end potential for the potential scan.

Step potential var / literal The potential increase for each step. This is an absolute step that does
not affect the direction of the scan.

Amplitude
potential

var / literal The amplitude of the pulse. This value times 2 is added to the currently
applied potential during a step.

Frequency var / literal The frequency of the pulses.

Example

Perform a SWV measurement and send a data packet for every iteration. The data packet contains the
set potential and “forward current – reverse current”. The SWV performs a potential scan from -500 mV
to 500 mV with steps of 10 mV at a frequency of 10 Hz. This results in a total of 101 data points at a rate
of 10 points per second. At every step a pulse of 30mV (2*15mV) is applied for 50ms (1/Frequency/2).

9.17 meas_loop_npv

Perform a Normal Pulse Voltammetry (NPV) measurement. In an NPV measurement, the pulse potential
is stepped from the begin potential to the end potential. At each step the pulse potential is applied and
the current is measured at the top of this pulse. The potential is then set back to the begin potential until
the next step. The measured current is stored in the “Output current” variable.

This is a measurement loop function and needs to be terminated with an command. Refer to end_loop

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var Output variable to store the set potential for this iteration.

Output current var Output variable to store the measured current in.

meas_loop_swv p c f r -500m 500m 10m 15m 10
pck_start
pck_add p
pck_add c
pck_end
end_loop

Page | 18

MethodSCRIPT v1.0
last document update: 22-3-2019

Begin potential var / literal The begin potential for the potential scan.

End potential var / literal The end potential for the potential scan.

Step potential var / literal The pulse potential increase for each step. Affects the amount of
data points per second, together with the scan rate. This is an
absolute step that does not affect the direction of the scan.

Pulse time var / literal The time the pulse should be applied.

Scan rate var / literal The speed at which the applied potential is ramped in V/s. Can
only be positive. Scan rate must be lower than “Step potential /
Pulse time / 2”.

Example

Perform an NPV measurement and send a data packet for every iteration. The data packet contains the
set potential and measured pulse current. The NPV performs a potential scan from -500 mV to 500 mV
with steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points
per second. At every step a potential pulse of “step index * step potential” mV is applied for 5ms.

9.18 meas_loop_ca

Perform a Chrono Amperometry (CA) measurement. In a CA measurement, a DC potential is applied the
current is measured at the specified interval. The measured current is stored in the “Output current”
variable.

This is a measurement loop function and needs to be terminated with an command. Refer to end_loop

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var Output variable to store the set potential for this iteration.

Output current var Output variable to store the measured current in.

DC potential var / literal The DC potential to be applied.

Interval time var / literal The interval between measured data points.

Run time var / literal The total run time of the measurement.

Example

Perform a CA measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. A DC potential of 100 mV is applied. The current is measured every 100
ms for a total of 2 seconds. This results in a total of 20 data points at a rate of 10 points per second.

meas_loop_npv p c -500m 500m 10m 20m 5m 100m
pck_start
pck_add p
pck_add c
pck_end
end_loop

meas_loop_ca p c 100m 100m 2
pck_start
pck_add p
pck_add c
pck_end
end_loop

Page | 19

MethodSCRIPT v1.0
last document update: 22-3-2019

9.19 meas_loop_ocp

Perform an Open Circuit Potentiometry (OCP) measurement. In an OCP measurement, the CE is
disconnected so that no potential is applied. The open circuit RE potential is measured at the specified
interval. The measured potential is stored in the “Output potential” variable.

This is a measurement loop function and needs to be terminated with an command. Refer to end_loop

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var Output variable to store the measured RE potential in.

DC potential var / literal The DC potential to be applied.

Interval time var / literal The interval between measured data points.

Run time var / literal The total run time of the measurement.

Example

Perform an OCP measurement and send a data packet for every iteration. The data packet contains the
set measured RE potential. The RE potential is measured every 100 ms for a total of 2 seconds. This
results in a total of 20 data points at a rate of 10 points per second.

9.20 meas_loop_eis

Perform an EIS frequency scan and store the resulting Z-real and Z-imaginary in the given variables. EIS
does not currently support autoranging. High speed PGStat mode is required for EIS. The following
commands currently have no effect on EIS measurements:

 set_max_bandwidth: bandwidth is taken from frequency scan ranges.
 set_pot_range: pot range is taken from amplitude and DC potential parameters.
 set_autoranging: autoranging is not yet implemented for EIS

This is a measurement loop function and needs to be terminated with an command. Refer to end_loop

section “Measurement loop” for more information.

Arguments

Name Type

Output frequency var Output variable to store the set frequency for this iteration.

Output Z-real var Output variable to store the measured phase in.

Output Z-imaginary var Output variable to store the measured impedance in.

Amplitude var / literal Amplitude of the applied sinewave.

Start frequency var / literal Start frequency of the scan.

End frequency var / literal End frequency of the scan.

Nr of points var / literal Number of frequency points to be scanned.

DC potential var / literal DC potential offset of the applied sinewave.

meas_loop_ocp p 500m 100m 2
pck_start
pck_add p
pck_end
end_loop

Page | 20

MethodSCRIPT v1.0
last document update: 22-3-2019

Example

Perform an EIS measurement a frequency f with 10mV amplitude and stores the Z-real result in r and the
Z-imaginary result in j. 11 points will be measured at frequencies between 100 kHz and 100 Hz, divided
on a logarithmic scale.

9.21 on_finished:

Code after this tag is always executed unless an error has occurred. This is useful to be able to set the
potentiostat into a known state after a MethodSCRIPT has been aborted.

Arguments

No arguments.

 Example

This script turns the cell on and performs a CA measurement. If the measurement is aborted halfway by
sending an abort command during the script execution, the cell is turned off. This ensures the cell is
always turned off, even if the measurement is aborted.

9.22 set_autoranging

Enable or disable autoranging for all meas_loop_* functions except EIS. Autoranging selects the most
appropriate current range for the current measured in the last measurement loop iteration. The selected
current range is limited by the min and max current parameters. If min expected current and max
expected current are the same value, autoranging is disabled.

Arguments

Name Type

Min current literal The min current in this measurement.

Max current literal The max current in this measurement.

 Example

Enable autoranging for currents between 1 uA and 1 mA.

meas_loop_eis f r i 10m 100k 100 11 0
pck_start
pck_add f
pck_add r
pck_add_i
pck_end
end_loop

cell_on
meas_loop_ca p c 100m 100m 2
pck_start
pck_add p
pck_add c
pck_end
end_loop
on_finished:
cell_off

 set_autoranging 1u 1m

Page | 21

MethodSCRIPT v1.0
last document update: 22-3-2019

9.23 pck_start

Signal the start of a measurement data packet.

Arguments

No arguments.

 Example

Signal the start of a new measurement package.

9.24 pck_add

Add a stored variable to be sent in this data packet.

Arguments

Name Type

Variable var The variable to add to the data packet.

Example

Add variable ‘i’ to the data packet.

9.25 pck_end

Signal the end of a measurement data package.

Arguments

No arguments.

Example

Signal the end of a measurement data package.

9.26 set_max_bandwidth

Set maximum bandwidth of the signal being measured. Any signal of significant higher frequency than
the set bandwidth will be filtered out. There is no defined lower bound to the bandwidth. At max
bandwidth the signal is attenuated by up to 1% of the potential or current step.

Arguments

Name Type

Max bandwidth var / literal The maximum expected bandwidth expected. Anything below this
frequency will not be filtered out.

Example

Set the max bandwidth to a frequency of 1 kHz.

 pck_start

pck_add i

pck_end

set_max_bandwith 1k

Page | 22

MethodSCRIPT v1.0
last document update: 22-3-2019

9.27 set_cr

Set the current range for the given maximum current. The device will select the lowest current range that
can measure this current without overloading.

Arguments

Name Type

Max current var / literal The maximum expected current.

Example

Set current range to be able to measure a current of 500nA

9.28 cell_on

Turn the cell on, any settings set when the cell was off will be applied here.

Arguments

No arguments.

Example

Turn the cell on. The potentiostat will start applying the configured potential.

9.29 cell_off

Turn the cell off.

Arguments

No arguments.

Example

Turn the cell off. This stops the potentiostat from applying a potential to the cell.

9.30 set_pgstat_mode

Set the pgstat hardware configuration to be used for measurements. Setting the pgstat mode initializes
all channel settings to the default values for that mode. See section “PGStat Modes

set_cr 500n

cell_on

cell_off

Page | 23

MethodSCRIPT v1.0
last document update: 22-3-2019

PGStat Modes” for more information.

Arguments

Name Type

PGStat mode uint8 Set pgstat mode:
0 = off
2 = low power
3 = high power

Example

Set hardware configuration to high power mode.

9.31 send_string

Send an arbitrary string as output of the MethodSCRIPT. This string is prepended by a ‘T’, this is the
“text” package identifier. Avoid sending a ‘\n’ character or non-ASCII characters.

Arguments

Name Type

String string An arbitrary string.

Example

Sends string “hello world” as output of the MethodSCRIPT.

9.32 set_gpio

Set GPIO pins. Pins with multiple roles that are not configured as GPIO pins are ignored.

Arguments

Name Type

Pin mask uint32 Bitmask that represents the state of the bits. Bit 0 is for GPIO0, bit 1
for GPIO1, etc. Bits that are high correspond with a high output signal.

Example

5 translates to 101 in binary, so pin 2 and 0 are set high, the rest of the pins is set low.

9.33 set_pot_range

Set the expected potential range for this script. Some devices cannot apply their full potential range in
one measurement, but need to be set up to reach these potentials beforehand. This function lets you
communicate to the device what the voltage range is you expect in your measurement. The device will
automatically configure itself to be able to reach these potentials. This function will return an error if the
expected voltage range is greater than the dynamic potential range of the device, or if the expected
voltage range exceeds the maximum potential limits of the device.

This is a device specific command. The following devices require this command to reach their full
potential range:

 EmStat Pico

set_pgstat_mode 3

send_string hello world

set_gpio 5

Page | 24

MethodSCRIPT v1.0
last document update: 22-3-2019

For these devices the voltage range that can be applied without changing the expected potential range is
defined in section “

Page | 25

MethodSCRIPT v1.0
last document update: 22-3-2019

PGStat Modes” as the “dynamic potential range”.

Arguments

Name Type

Potential 1 var / literal Bound 1 of the expected voltage range for this measurement.

Potential 2 var / literal Bound 2 of the expected voltage range for this measurement.

Example

Ensure that the next measurement can apply potentials between 0 V and 1.2 V.

set_pot_range 0 1200m

Page | 26

MethodSCRIPT v1.0
last document update: 22-3-2019

9.34 set_pgstat_chan

Select a potentiostat channel. If the device has multiple parallel potentiostat channels, they can be
selected with this command. In the future it will be possible to use these two channels parallel to each
other, but this feature is not yet available. Refer to section “Other device specific properties” to see how
many channels each device has.

Arguments

Name Type

Channel index uint8 The pgstat channel index to select.

Example

Ensure that the next measurement can apply potentials between 0 V and 1.2 V.

set_pot_range 0 1200m

Page | 27

MethodSCRIPT v1.0
last document update: 22-3-2019

10 PGStat Modes

PGStat modes are device wide configurations that affect which hardware is used during measurements.
This is necessary for devices that have a choice between multiple measurement hardware with different
properties. PGStat modes are device specific, more information can be found in “PGStat mode
properties”.

10.1 PGStat mode off

All hardware is turned off to save power, no measurements can be done.

10.2 PGStat mode low speed

The hardware configuration that has the best properties for low speed measurements is picked. Usually
this means it is less sensitive to high frequency noise and consumes less power. However the maximum
bandwidth is limited.

10.3 PGStat mode high speed

The hardware configuration that has the best properties for high speed measurements is used. In
general, this will consume more power and be more sensitive to noise. However, it will allow higher
frequencies measurements to be done.

Page | 28

MethodSCRIPT v1.0
last document update: 22-3-2019

11 Script examples

Note: The command terminators (\n) are not shown in the examples. These examples can be used on
any device that supports MethodSCRIPT, but they contain some commands that are device specific for
the EmStat Pico. These commands will be ignored on devices that do not use them.

11.1.1 EIS example

The following example script runs an EIS scan from 200 kHz down to 200 Hz over 11 points. After each
point a data packet will be sent containing the: frequency, Z-real, Z-imaginary variables. The amplitude of
the sine is set to 10m and no DC potential is applied.

e
var h
var r
var j
#Select channel 0
set_pgstat_chan 0
#High speed mode is required for EIS
set_pgstat_mode 3
#Set current range for currents of up to 1 mA
set_cr 1m
#Cell must be on to do measurements
cell_on
#Run actual EIS measurement
meas_loop_eis h r j 10m 200k 200 11 0
#Send measurement package containing frequency, Z-real and Z-imaginary
pck_start
pck_add h
pck_add r
pck_add j
pck_end
endloop
#Turn cell off when finished or aborted
on_finished:
cell_off

Page | 29

MethodSCRIPT v1.0
last document update: 22-3-2019

11.1.2 LSV example

The following example script runs an LSV from -0.5 V to 1.5 V with steps of 10 mV in 201 steps. The
scan rate is set to 100 mV/s. After each step, a data packet will be sent containing the set cell potential
and the measured WE current. The measured WE current will be used to autorange.

e
var c
var p
#Select channel 0
set_pgstat_chan 0
#Low power mode is fast enough
set_pgstat_mode 2
#Select bandwidth of 40 for 10 points per second
set_max_bandwidth 40
#Set up potential window between -0.5 V and 1.5 V, otherwise
#the max potential would be 1.1 V for low speed mode
set_pot_range -500m 1500m
#Set current range to 1 mA
set_cr 1m
#Enable autoranging, between current of 100 uA and 5 mA
set_autoranging 100u 5m
#Turn cell on for measurements
cell_on
#equilibrate at -0.5 V for 5 seconds, using a CA measurement
meas_loop_ca p c -500m 500m 5
pck_start
pck_add p
pck_add c
pck_end
endloop
#Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV
#and a scan rate of 100 mV/s
meas_loop_lsv p c -500m 1500m 10m 100m
#Send package containing set potential and measured WE current.
pck_start
pck_add p
pck_add c
pck_end
endloop
#Turn off cell when done or aborted
on_finished:
cell_off

Page | 30

MethodSCRIPT v1.0
last document update: 22-3-2019

11.1.3 SWV example

The following example script runs a SWV from -0.5V to 0.5V with steps of 10 mV in 101 steps. After
each step, a data packet will be sent containing the cell potential for that step and current resulting from
the SWV measurement.

e
var c
var p
var f
var g
set_pgstat_chan 0
set_pgstat_mode 2
#Set maximum required bandwidth based on frequency * 4,
#however since
set_max_bandwidth 80
#Set potential window.
#The max expected potential for SWV is EEnd + EAmp * 2 – EStep.
#This measurement would also work without this command since it
#stays within the default potential window of -1.1 V to 1.1V
set_pot_range -500m 690m
#Set current range for a maximum expected current of 2 uA
set_cr 2u
#Disable autoranging
set_autoranging 2u 2u
#Turn cell on for measurement
cell_on
#Perform SWV
meas_loop_swv p c f g -500m 500m 10m 100m 10
#Send package with set potential,
#”forward current – reverse current”,
#”forward current”
#”reverse current”
pck_start
pck_add p
pck_add c
pck_add f
pck_add g
pck_end
endloop
#Turn off cell when done or aborted
on_finished:
cell_off

Page | 31

MethodSCRIPT v1.0
last document update: 22-3-2019

12 Device specific information

12.1 PGStat mode properties

EmStat Pico

Low speed mode Value min Value max

Bandwidth 0.016 Hz 100 Hz

Potential range -1.25 V 2.0 V

Dynamic potential window 2.2 V 2.2 V

High speed mode Value min Value max

Bandwidth 0.016 Hz 200 kHz

Potential range -1.7 V 2.0 V

Dynamic potential window 1.214 V 1.214 V

Table 6: EmStat Pico PGStat mode properties (see EmStat Pico datasheet for more information)

Page | 32

MethodSCRIPT v1.0
last document update: 22-3-2019

12.2 Current ranges

EmStat Pico

Low speed mode

current ranges

Current follower resistor Current range index

100 nA 10 MOhm 0x0

1.95 uA 512 kOhm 0x1

3.91 uA 256 kOhm 0x2

7.81 uA 128 kOhm 0x3

15.63 uA 64 kOhm 0x4

31.25 uA 32 kOhm 0x5

62.5 uA 16 kOhm 0x6

125 uA 8 kOhm 0x7

250 uA 4 kOhm 0x8

500 uA 2 kOhm 0x9

1 mA 1 kOhm 0xA

5 mA 200 Ohm 0xB

High speed mode

current ranges

Current follower resistor Current range index

100 nA 10 MOhm 0x80

1 uA 1 MOhm 0x81

6.25 uA 160 kOhm 0x82

12.5 uA 80 kOhm 0x83

25 uA 40 kOhm 0x84

50 uA 20 kOhm 0x85

100 uA 10 kOhm 0x86

200 uA 5 kOhm 0x87

1 mA 1 kOhm 0x88

5 mA 200 Ohm 0x89

Table 7: EmStat Pico current ranges

12.3 Other device specific properties

Property EmStat Pico

Number of pgstat channels 2

Table 8: Other device specific properties

	1 Introduction
	2 Features
	2.1 Release features
	2.2 Planned future features
	2.3 Supported devices

	3 Script format
	4 MethodSCRIPT variables
	4.1 Script command variables
	4.2 Measurement data package variables

	5 Interpreting measurement data packages
	5.1 Package format
	5.2 Variable sub package format
	5.3 Package parsing example

	6 Measurement loop commands
	6.1 Measurement loop example

	7 Variable Types
	8 Script parameter types
	8.1 var
	8.2 literal
	8.3 var_type
	8.4 integer (int8, int16, int32, uint8, uint16, uint32)
	8.5 comparator
	8.6 string

	9 Script commands
	9.1 var
	Arguments
	Example

	9.2 store_var
	Arguments
	Example

	9.3 copy_var
	Arguments
	Example

	9.4 add_var
	Arguments
	Example

	9.5 sub_var
	Arguments
	Example

	9.6 mul_var
	Arguments
	Example

	9.7 div_var
	Arguments
	Example

	9.8 set_e
	Arguments
	Example

	9.9 wait
	Arguments
	Example

	9.10 loop
	Arguments

	9.11 endloop
	Arguments

	9.12 meas
	Arguments
	Example

	9.13 meas_loop_lsv
	Arguments
	Example

	9.14 meas_loop_cv
	Arguments
	Example

	9.15 meas_loop_dpv
	Arguments
	Example

	9.16 meas_loop_swv
	Arguments
	Example

	9.17 meas_loop_npv
	Arguments
	Example

	9.18 meas_loop_ca
	Arguments
	Example

	9.19 meas_loop_ocp
	Arguments
	Example

	9.20 meas_loop_eis
	Arguments
	Example

	9.21 on_finished:
	Arguments
	Example

	9.22 set_autoranging
	Arguments
	Example

	9.23 pck_start
	Arguments
	Example

	9.24 pck_add
	Arguments
	Example

	9.25 pck_end
	Arguments
	Example

	9.26 set_max_bandwidth
	Arguments
	Example

	9.27 set_cr
	Arguments
	Example

	9.28 cell_on
	Arguments
	Example

	9.29 cell_off
	Arguments
	Example

	9.30 set_pgstat_mode
	Arguments
	Example

	9.31 send_string
	Arguments
	Example

	9.32 set_gpio
	Arguments
	Example

	9.33 set_pot_range
	Arguments
	Example

	9.34 set_pgstat_chan
	Arguments
	Example

	10 PGStat Modes
	10.1 PGStat mode off
	10.2 PGStat mode low speed
	10.3 PGStat mode high speed

	11 Script examples
	11.1.1 EIS example
	11.1.2 LSV example
	11.1.3 SWV example

	12 Device specific information
	12.1 PGStat mode properties
	EmStat Pico

	12.2 Current ranges
	EmStat Pico

	12.3 Other device specific properties

