
7-2020-002

v1.2 Rev. 1

Page | 2

MethodSCRIPT v1.2
last document update: 22-4-2020

Contents
1 Introduction ... 5

2 Features .. 6

2.1 Features ... 6

2.2 Planned future features .. 6

2.3 Supported devices ... 6

3 Script format ... 7

4 MethodSCRIPT variables .. 7

4.1 Script command variables .. 8

4.2 Measurement data package variables .. 8

5 Interpreting measurement data packages ... 10

5.1 Package format .. 10

5.2 Variable sub package format .. 10

5.3 Package parsing example .. 11

6 Measurement loop commands ... 11

6.1 Measurement loop example ... 11

6.2 Measurement loop output .. 12

7 Variable Types .. 13

8 Script argument types ... 14

8.1 var .. 14

8.2 literal .. 14

8.3 var_type ... 14

8.4 integer (int8, int16, int32, uint8, uint16, uint32) ... 14

8.5 comparator .. 14

8.6 string .. 14

8.7 Optional arguments .. 14

9 Optional arguments... 15

9.1 poly_we .. 15

9.2 nscans ... 16

9.3 meta_msk .. 16

10 Tags ... 17

10.1 Supported tags .. 17

10.2 on_finished: .. 17

11 Script commands ... 18

11.1 var .. 18

11.2 store_var .. 18

11.3 array ... 18

11.4 array_set .. 19

11.5 array_get .. 19

11.6 copy_var .. 19

Page | 3

MethodSCRIPT v1.2
last document update: 22-4-2020

11.7 add_var .. 20

11.8 sub_var .. 20

11.9 mul_var .. 20

11.10 div_var .. 21

11.11 set_e .. 21

11.12 wait .. 21

11.13 set_int .. 22

11.14 await_int ... 22

11.15 loop .. 23

11.16 endloop .. 23

11.17 breakloop ... 23

11.18 if, elseif, else, endif ... 24

11.19 meas .. 24

11.20 meas_loop_lsv.. 25

11.21 meas_loop_cv .. 26

11.22 meas_loop_dpv .. 27

11.23 meas_loop_swv ... 28

11.24 meas_loop_npv .. 29

11.25 meas_loop_ca .. 30

11.26 meas_loop_pad .. 31

11.27 meas_loop_ocp .. 32

11.28 meas_loop_eis ... 33

11.29 set_autoranging ... 34

11.30 pck_start .. 34

11.31 pck_add ... 34

11.32 pck_end ... 35

11.33 set_max_bandwidth ... 35

11.34 set_cr ... 35

11.35 cell_on .. 36

11.36 cell_off .. 36

11.37 set_pgstat_mode ... 36

11.38 send_string .. 37

11.39 set_gpio_cfg ... 37

11.40 set_gpio_pullup .. 38

11.41 set_gpio ... 38

11.42 get_gpio ... 38

11.43 set_pot_range .. 39

11.44 set_pgstat_chan ... 40

11.45 set_poly_we_mode .. 40

11.46 get_time ... 40

Page | 4

MethodSCRIPT v1.2
last document update: 22-4-2020

11.47 file_open ... 41

11.48 file_close .. 41

11.49 set_script_output ... 41

11.50 hibernate .. 42

11.51 i2c_config ... 42

11.52 i2c_write_byte .. 43

11.53 i2c_read_byte ... 43

11.54 i2c_write ... 44

11.55 i2c_read ... 45

11.56 i2c_write_read .. 46

11.57 abort .. 47

11.58 timer_start .. 47

11.59 timer_get .. 48

12 PGStat Modes ... 49

12.1 PGStat mode off .. 49

12.2 PGStat mode low speed .. 49

12.3 PGStat mode high speed ... 49

12.4 PGStat mode max range .. 49

12.5 PGStat mode poly_we ... 49

13 Script examples ... 50

13.1 EIS example ... 50

13.2 LSV example .. 51

13.3 SWV example ... 53

13.4 I2C example – temperature sensor ... 55

13.5 I2C example – Real time clock ... 56

14 Error handling ... 58

15 Device specific information ... 61

15.1 PGStat mode properties .. 61

15.2 Current ranges ... 62

15.3 Supported variable types for meas command .. 63

15.4 Device GPIO pin configurations .. 63

15.5 Other device specific properties ... 64

16 Version changes ... 65

Page | 5

MethodSCRIPT v1.2
last document update: 22-4-2020

1 Introduction

The MethodSCRIPT scripting language is designed to improve the flexibility of the PalmSens potentiostat
and galvanostat devices for OEM users. It allows users to start measurements with arguments that are
similar to the arguments in PSTrace.

PalmSens provides libraries and examples for handling low level communication with the EmStat Pico
and generating scripts for supported devices.

Terminology
PGStat: Potentiostat / Galvanostat
CE: Counter Electrode
RE: Reference Electrode
WE: Working Electrode
RHS: Right hand side
LHS: Left hand side
Technique: A standard electrochemical technique
Iteration: A single execution of a loop

Page | 6

MethodSCRIPT v1.2
last document update: 22-4-2020

2 Features

2.1 Features

• Measurements can be tested in PSTrace and then exported to MethodSCRIPT. This allows for
convenient testing of different measurements in PSTrace. The resulting MethodSCRIPT can then
be easily imported as a text file and executed from within the user application. PSTrace can also
run custom scripts and is able to plot the resulting measurement data.

• Support for the following electrochemical techniques:
o Linear Sweep Voltammetry (LSV)
o Cyclic Voltammetry (CV)
o Differential Pulse Voltammetry (DPV)
o Square Wave Voltammetry (SWV)
o Normal Pulse Voltammetry (NPV)
o Chronoamperometry (CA)
o Open Circuit Potentiometry (OCP)
o Electrochemical Impedance Spectroscopy (EIS)
o Pulsed Amperometric Detection (PAD)

• Storing of measuring data to an SD card (if SD card is available).
• Support for BiPot / Poly WE
• Different measurements can be chained after one another in the same script, making it possible

to combine multiple measurements without communication overhead.
• Conditional statements (if, else, elseif, endif)
• Variables can be stored and referenced to from within the script.
• Up to 26 variables can be declared. This enables temporary storage of measurement data to be

sent later.
• Simple math can be performed on variables (add, sub, mul, div).
• Support for loops.
• Support for user code during a measurement step.
• Exact timing control.
• Script syntax will be verified when loading the script. Runtime errors are checked at execution. If

there is an error, the location and error code of the error will be communicated.
• Autorun script stored in persistent memory at start up.
• Low power modes (sleep, hibernate).
• Variables can also be declared as arrays. Up to 4000 variables can be used. This allows for fast

burst measurements that are not slowed down by communication.
• Direct control over the I2C interface for communication with external sensors and actuators.

2.2 Planned future features

• Checksum for measurement data packages to check their validity.

2.3 Supported devices

• EmStat Pico

Page | 7

MethodSCRIPT v1.2
last document update: 22-4-2020

3 Script format

The script consists of a series of pre-defined commands. Each command starts with the command
string, followed by a pre-defined number of arguments. Arguments are separated by a ‘ ‘ (space)
character. Each command is terminated by a ‘\n’ (newline) character. The ‘\n’ is omitted in most
examples. Each line is limited to a maximum of 128 characters. Comments can be added by having the
first non-whitespace character on the line be ‘#’.

To send a script to the device, first send “e\n”. This sets the device into MethodSCRIPT mode. To
terminate the script, add a line containing only a ‘\n’.

The following example shows a short script that simply declares a variable, including the ‘\n’ characters:

The response to this script will be:

4 MethodSCRIPT variables

MethodSCRIPT variables represent numerical values that can be used within the script. They can be
stored internally as either floating point or as signed integer. Some commands only accept integer
variables, others will only accept floating point variables, this is indicated in the command parameter
table.

Floating point variables are represented as a signed integer value with an SI prefix. Despite the name, this
SI prefix is added after the integer value. See “Table 1: SI prefix conversion table” for the available SI
prefixes. Only SI prefixes available in this table can be used. For example, a variable with a value of “100”
and a prefix of “m” translates to a floating point value of 0.1. Floating point variables cannot represent
every possible value and will be rounded to the nearest representable number. This makes them less
suitable for some purposes, such as counters in loops.

e\n

#This is a comment\n

send_string “hello world”\n

\n

e\n ← Ack of the execute script cmd ‘e’

Thello world\n ← Reply of the “send_string “hello world”” cmd
\n ← End of script

Page | 8

MethodSCRIPT v1.2
last document update: 22-4-2020

Table 1: SI prefix conversion table

Integer variables end with an ‘i’ instead of an SI prefix. They are represented as 32 bit signed integers.
Integers are not subject to rounding, except when dividing two integers.

Variables are not explicitly linked to a unit; instead the unit is implied by the associated “Variable Type”.
Refer to section “Variable Types” for more information. Representation of MethodSCRIPT variables
changes depending on whether the variable is part of a script command or part of a measurement data
package.

Some number input parameters are not MethodSCRIPT variables. These include uint8, uint16, uint32,
int8, int16, int32. For these integer parameters, it is allowed but not necessary to append an ‘i'. They do
not accept SI Prefixes.

4.1 Script command variables

Variables that are part of the MethodSCRIPT sent to the device are represented as a signed integer
followed by a prefix for floating point values, or ‘i' for integer values. Integer variables can also be entered
as a hexadecimal or binary representation by prefixing the value with 0x or 0b respectively. Hexadecimal
or binary representations are not allowed for floating point variables.

Example 1:

Above example shows the hexadecimal representation of the decimal number “255”. It is stored
internally as an integer because it ends with an ‘i'.

Example 2:

Above example shows the floating point number 0.5. It is stored internally as a floating point number
because it has an SI prefix.

4.2 Measurement data package variables

Variables that are part of a measurement data package are represented as 28 bit unsigned hexadecimal
values with an offset of 0x8000000 (2^27). A floating point variable has one of the SI prefixes shown in
“Table 1: SI prefix conversion table”, an integer variable ends with an ‘i' instead.

SI prefix Text Factor

 'a' atto 10^-18

 'f' femto 10^-15

 'p' pico 10^-12

 'n' nano 10^-9

 'u' micro 10^-6

 'm' milli 10^-3

 ' ' none 10^0

 'k' kilo 10^3

 'M' Mega 10^6

 'G' Giga 10^9

 'T' Tera 10^12

 'P' Peta 10^15

 'E' Exa 10^18

0xFFi

500m

Page | 9

MethodSCRIPT v1.2
last document update: 22-4-2020

This format looks as follows:

Where:
HHHHHHH = Hexadecimal value.

p = Prefix character.

For example, a value of 0.01 would be represented as “800000Am” and a value of -0.01 would be
represented as “7FFFFF6m”. PalmSens provides source code examples that showcase how to parse
measurement data.

To convert a MethodSCRIPT variable to a floating point value, the following pseudocode can be used:

To convert a floating point value to a MethodSCRIPT variable, the following pseudocode can be used:

Most programming languages have a built in way of converting a HEX string to an integer. The function
SIFactorFromPrefix can use a hash table lookup or a switch case to translate the prefix character to its
corresponding factor.

HHHHHHHp

(HexToUint32(HHHHHHH) - 2^27) * SIFactorFromPrefix(p)

Uint32ToHex(value) / SIFactorFromPrefix(p) + 2^27

Page | 10

MethodSCRIPT v1.2
last document update: 22-4-2020

5 Interpreting measurement data packages

5.1 Package format

Measurement packages consist of a header, followed by any amount of “variable” packages (each with
their own “variable type”), followed by a terminating ‘\n’ character. “Table 2: Measurement data package
format” shows this format. Section “Variable sub package format” explains the format of the variable
fields.

Header Var 1 Var separator Var 2 Var separator Var X Term

P Variable ; Variable ; Variable \n

Table 2: Measurement data package format

5.2 Variable sub package format

The format for a variable sub package is:

Var 1 Var 1 metadata 1 Var 1 metadata X

ttHHHHHHHp ,MV..V ,MV..V

Table 3: Variable sub package format

Where:
tt = Variable Type, represented as a base26 identifier that ranges from “aa” to “zz”.

Variable Types are always lower case. See section “Variable Types” for more
information.

HHHHHHHp = MethodSCRIPT package variable. See section “Measurement data package variables”
for more information.

, = Metadata separator.
M = Metadata type ID, see “Table 4: Metadata types”.
V..V = Metadata value as a hexadecimal value, length is determined by metadata type.

Metadata fields contain extra information about the variable. Each variable can have multiple metadata
fields. See “Table 4: Metadata types” for the possible metadata types.

ID Name Length Content

1 Status 1 0 = OK
1 = timing not met (custom commands in the measurement loop took too
long for the specified interval of the measurement)
2 = overload (>95% of max ADC value)
4 = underload (<2% of max ADC value)
8 = overload warning (>80% of max ADC value)

If an overload or underload is detected, the measured data can be
unreliable.

2 Current
range

2 Index of current range (device specific, see “Current ranges”). This current
range is just intended for diagnostic purposes, and is not used in any
calculations during parsing.

Table 4: Metadata types

Page | 11

MethodSCRIPT v1.2
last document update: 22-4-2020

5.3 Package parsing example

An EmStat Pico sends the following measurement data package:

This package contains two variables: “da8000800u” and “ba8000800u,10,201”.

The variable sub package “da8000800u” can be broken down as follows:

• The Variable Type is “da”, this is variable type “VT_CELL_SET_POTENTIAL”.
• The value is “08000800 – 0x8000000” = 0x800 = 2048. The prefix is “u” which stands for

“micro”. This makes the final value 2048 uV (or 2.048 mV).
• This variable has no metadata.

The variable sub package “ba8000800u,10,201” can be broken down as follows:

• The Variable Type is “ba”, this corresponds to Variable Type "VT_CURRENT”.
• The value is “08000800 – 0x8000000” = 0x800 = 2048. The prefix is “u” which stands for

“micro”. This makes the final value 2048 uA (or 2.048 mA).
• This variable has two metadata packages, the first has an ID of “1” and a value of 0, indicating it

is a status package with the value “OK”. The second metadata package has an ID of “2” and a
value of 01. This indicates that it is a current range with the current range “1”. For the EmStat
Pico, this refers to the “1.95 uA” current range. This current range is just for diagnostic
purposes, and is not used in any calculations during parsing.

6 Measurement loop commands

All measurement techniques are implemented as “measurement loop commands”. This means that the
command will execute one iteration of the measurement technique. After this, all MethodSCRIPT
commands within the measurement loop are executed. When all commands have been executed, the
device waits for the correct timing to start the next iteration of the measurement technique and the
process begins again for the next iteration.

It is not possible to use a measurement loop inside of another measurement loop. Measurement loops
can be used freely inside of a normal loop.

It is possible that the script steps in the loop take more time than is available between each iteration. If
this happens, the next measurement iteration is delayed. It is the responsibility of the user to ensure there
is enough time between measurement iterations to execute the user commands in the loop.

6.1 Measurement loop example

The following example shows a typical Chrono Amperometry measurement loop:

Pda8000800u;ba8000800u,10,201\n

#Run a measurement loop for the Chrono Amperometry technique

meas_loop_ca p c 100m 100m 2

 #These user commands are executed after one measurement

 #iteration has been done

 pck_start

 pck_add p

 pck_add c

 pck_end

 #At “endloop”, the script execution halts until it is time for the

 #next measurement loop iteration

endloop

Page | 12

MethodSCRIPT v1.2
last document update: 22-4-2020

6.2 Measurement loop output

At the start of each measurement loop, the following line is sent from the device:

Where:
M = The header for a measurement loop start package.
XXXX = The technique ID of the measurement loop, see “Table 5: Measurement technique ID's”

ID Name

0000 Linear Sweep Voltammetry

0001 Differential Pulse Voltammetry

0002 Square Wave Voltammetry

0003 Normal Pulse Voltammetry

0005 Cyclic Voltammetry

0007 Chrono Amperometry

0008 Pulsed Amperometric Detection

000B Open-Circuit Chrono Potentiometry

000D Electrochemical Impedance Spectroscopy

Table 5: Measurement technique ID's

When a measurement loop is completed the following line is sent:

The following example shows the output of a EIS measurement loop command:

MXXXX

*

M000D
… data packages …
*

Page | 13

MethodSCRIPT v1.2
last document update: 22-4-2020

7 Variable Types

Variable Types offer context to MethodSCRIPT variables. They communicate the unit and the origin of
the variable. They are also used as an argument to some functions to measure a specific type of variable.
For example, when the “meas” command is used, the type of variable to measure must be passed as an
argument. Table 6: Variable Types shows the available variable types.

Measurable types ID Description

VT_UNKNOWN aa Unknown (not initialized)

VT_POTENTIAL ab Measured WE voltage vs RE

VT_POTENTIAL_CE ac Measured CE voltage vs GND

VT_POTENTIAL_RE ae Measured RE voltage vs GND

VT_POTENTIAL_WE_VS_CE ag Measured WE voltage vs CE

VT_POTENTIAL_AIN0 as Measured Analog Input 0 voltage

VT_POTENTIAL_AIN1 at Measured Analog Input 1 voltage

VT_POTENTIAL_AIN2 au Measured Analog Input 2 voltage

VT_CURRENT ba Measured WE current

VT_PHASE cp Measured phase

VT_IMP ci Measured impedance

VT_ZREAL cc Measured real part of complex impedance

VT_ZIMAG cd Measured imaginary part of complex impedance

Appliable types ID Description

VT_CELL_SET_POTENTIAL da Set control value for cell potential

VT_CELL_SET_CURRENT db Set control value for cell current

VT_CELL_SET_FREQUENCY dc Set value for frequency

VT_CELL_SET_AMPLITUDE dd Set value for ac amplitude

Other ID Description

VT_TIME eb Time in seconds, referenced to the time since
startup

VT_PIN_MSK ec Binary pin mask, indicating which pins are high / low

Generic types (reserved for
user)

ID Description

VT_CURRENT_GENERIC1 ha

VT_CURRENT_GENERIC2 hb

VT_CURRENT_GENERIC3 hc

VT_CURRENT_GENERIC4 hd

VT_POTENTIAL_GENERIC1 ia

VT_POTENTIAL_GENERIC2 ib

VT_POTENTIAL_GENERIC3 ic

VT_POTENTIAL_GENERIC4 id

VT_MISC_GENERIC1 ja

Page | 14

MethodSCRIPT v1.2
last document update: 22-4-2020

VT_MISC_GENERIC2 jb

VT_MISC_GENERIC3 jc

VT_MISC_GENERIC4 jd

Table 6: Variable Types

8 Script argument types

8.1 var

The argument “var” is a reference to a MethodSCRIPT variable. Variables can be changed during
runtime.

8.2 literal

A literal is a constant value argument, it cannot change during runtime.

8.3 var_type

See section “Variable Types”

8.4 integer (int8, int16, int32, uint8, uint16, uint32)

These are integer constants, these cannot be changed and do not accept SI prefixes.

8.5 comparator

Comparator operator for Boolean logic, these include:
• The equals operator “==”
• The not equals operator “!=”
• The greater than operator “>”
• The greater than or equal to operator “>=”
• The smaller than operator “<”
• The smaller than or equal to operator “<=”
• The bitwise AND operator “&”

(true if at least one bit of both sides matches and is ‘1’)
• The bitwise OR operator “|”

(true if there is at least one bit of the left or right is set to ‘1’)
• The bitwise Exclusive OR operator “^”

(true if at least one bit of the right and left operator differ in value)

8.6 string

A string constant argument, a string is always encapsulated in double quotes (").

8.7 Optional arguments

Some commands can have optional arguments to extend their functionality. For example most
techniques support the use of a second working electrode (bipot or poly_we). See chapter “Optional
arguments” for detailed information.

Page | 15

MethodSCRIPT v1.2
last document update: 22-4-2020

9 Optional arguments

Optional arguments are added after the last mandatory argument. The format is "cmd_name(arg1 arg2
arg3 ..)"

9.1 poly_we

Measure a current on a secondary WE. This secondary WE uses the CE and RE of the main WE, but can
be offset in potential from the main WE or RE. WE’s that are used as poly WE must be configured as
such using the command “set_pgstat_mode 5” for the channel the WE belongs to.

Arguments

Name Type

Channel uint8 Channel of the additional working electrode

Output current var[out] Output variable to store the measured current in.

Example

Perform an LSV measurement and send a data packet for every iteration. The data packet contains the
set potential (p), the measured current of the main WE (c) and the measured current of the secondary

e

#declare variable for output potential

var p

#declare variable for output current of main WE

var c

#declare variable for output current of secondary WE

var b

#enable bipot on ch 1

set_pgstat_chan 1

#set the selected channel to bipot mode

set_pgstat_mode 5

#set bp mode to offset or constant

set_poly_we_mode 1

#set offset or constant voltage

set_e 100m

#set the current-range of the secondary WE

set_cr 1u

#switch back to do actual measurement on ch 0

set_pgstat_chan 0

#set the main WE channel to low speed mode

set_pgstat_mode 2

set_cr 1u

set_pot_range 0m 0m

set_max_bandwidth 500

set_e -500m

cell_on

wait 1

#LSV measurement using channel 0 as WE1 and channel 1 as WE2

#WE2 current is stored in var b

meas_loop_lsv p c -500m 500m 5m 100m poly_we(1 b)

 pck_start

 pck_add p

 pck_add c

 pck_add b

 pck_end

endloop

cell_off

Page | 16

MethodSCRIPT v1.2
last document update: 22-4-2020

WE (b). The LSV performs a potential scan from -500 mV to 500 mV with steps of 10 mV at a rate of 100
mV/s. This results in a total of 101 data points at a rate of 10 points per second.

9.2 nscans

Perform multiple potential sweeps (scans) during a Cyclic Voltammetry measurement, instead of
sweeping only once. When nscans is used the cycle number will be printed at the start of every sweep.
The number is formatted as “Cxxxx” where “xxxx” is a number starting from 0000. A special character (“-
”) is printed at the end of every cycle. For the rest the output is the same as when nscans omitted. See
output example below.

Arguments

Name Type

Number of scans uint16 The number of scans to perform.

Example

This CV performs a potential scan from 0 V to -500 mV to 500 mV and back to 0V with steps of 10 mV
at a rate of 1 V/s. Because of the “nscans(5)” parameter, this pattern is repeated 5 times.

Output example with nscans(2):

M0005
C0000
Pda7F8604Fu;ba475D0A8p,10,207
Pda7F9E6A6u;ba51FC060p,10,207
Pda7FB6CFCu;ba5C994C0p,10,207
-
C0001
Pda7F9E6A6u;ba51FC060p,10,207
Pda7FB6CFCu;ba5C994C0p,10,207
Pda7FCF353u;ba6731714p,10,207
-
*

9.3 meta_msk

Enable or disable metadata packages sent with the “pck_add” command. This can be used to reduce
the amount of data sent by disabling packages, making it possible to achieve higher data rates.

Arguments

Name Type

Metadata mask uint32 A bitwise mask used to enable/disable types of metadata
packages. Values can be added to enable multiple types of
metadata.
0 = All metadata disabled
1 = Enable datapoint status package
2 = Enable current range package

meas_loop_cv p c 0 -500m 500m 10m 1 nscans(5)

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Page | 17

MethodSCRIPT v1.2
last document update: 22-4-2020

Example

This example measures a current and then sends two packages containing the measured current. The
first package will include the current range and status metadata. The second package will only include
the status metadata.

10 Tags

A script can have optional tags (or labels) to direct the execution flow in case of an event like aborting a
running script.

10.1 Supported tags

10.2 on_finished:

Example

The cell will be switched off when the EIS loop is finished or the script is aborted during the EIS loop. If a
runtime script error occurs, these commands will not be executed.

Name Description

on_finished: The commands after this this tag will be executed when the script
is aborted, or normal script execution reaches the tag. These
commands are not executed if a script error has occured, as no
further commands are executed in this case.

e

var a

set_pgstat_mode 2

meas 100m a ba

pck_start meta_msk(0x03)

pck_add a

pck_end

pck_start meta_msk(0x01)

pck_add a

pck_end

meas_loop_eis h r j 10m 200k 100 17 0

 pck_start

 pck_add h

 pck_add r

 pck_add j

 pck_end

endloop

on_finished:

cell_off

Page | 18

MethodSCRIPT v1.2
last document update: 22-4-2020

11 Script commands

11.1 var

Declare a variable. All variables must be declared before use. Currently only names that consist of 1
lower case character are allowed.

Arguments

Name Type

Variable name var Variable reference (a-z).

Example

Declare variable with name “a”.

11.2 store_var

Store a value in a variable. This value can be referenced in following commands.

Arguments

Name Type

Variable name var[out]
(int, float)

Variable reference.

Value literal
(int, float)

Literal value to store in the variable.

Variable Type var_type The type identifier for this value, see section “Variable Types”.

Example

Store a value of 200 in the variable ‘i’ as a floating point variable. This value is of type:
“VT_MISC_GENERIC1”.

Store a value of 200 in the variable ‘i’ as an integer variable. This value is of type:
“VT_MISC_GENERIC1”.

11.3 array

Declare a variable array. All variables must be declared before use. Currently only names that consist of 1
lower case character are allowed.

Arguments

Name Type

Variable name var Array reference (a-z).

Array size uint32 The amount of variables this array can hold.

Example

Declare array with name “a” and size 10.

var a

store_var i 200 ja

store_var i 200i ja

array a 10

Page | 19

MethodSCRIPT v1.2
last document update: 22-4-2020

11.4 array_set

Set a variable at the specified index in the array.

Arguments

Name Type

Array variable var Array reference.

Array index var / literal
(int)

The index in the array to store the value to.

Variable var / literal
(int, float)

The variable to store in the array.

Example

Declare array with name “a”. Then store the value “0.02” in the array at index 5.

11.5 array_get

Get a variable from the specified index in the array.

Arguments

Name Type

Array variable var Array reference.

Array index var / literal
(int)

The index in the array to get the value from.

Variable var[out]
(int, float)

The output variable to store the data from the array in.

Example

Get the value in the array at index 5 and stores it in variable “b”.

11.6 copy_var

Copies value from the source address to the destination address.

Arguments

Name Type

Source variable var
(int, float)

Variable reference to copy from.

Destination variable var[out]
(int, float)

Variable reference to copy to.

Example

Copies the variable ‘i‘ to ‘j‘.

array a 6i

array_set a 5i 20m

array_get a 5i b

copy_var i j

Page | 20

MethodSCRIPT v1.2
last document update: 22-4-2020

11.7 add_var

Add “lhs” to “rhs” and store the result in “lhs”. Metadata of lhs is maintained. Accepts either integer or
floating point variables, but both arguments must match.

Arguments

Name Type

Lhs var
(int, float)

The lhs variable, the result is stored here.

Rhs var / literal
(int, float)

Literal or variable to add to lhs var.

Example

Adds 1 to variable ‘i’ and stores it to ‘i’.

11.8 sub_var

Subtract “rhs” from “lhs” and store the result in “lhs”. Metadata of lhs is maintained. Accepts either
integer or floating point variables, but both arguments must match.

Arguments

Name Type

Lhs var
(int, float)

The lhs variable, the result is stored here.

Rhs var / literal
(int, float)

Literal or variable to subtract from lhs var.

Example

Subtracts 1 from the variable ‘i’ and stores it to ‘i’

11.9 mul_var

Multiply “lhs” with “rhs” and store the result in “lhs”. Metadata of lhs is maintained. Accepts either integer
or floating point variables, but both arguments must match.

Arguments

Name Type

Lhs var
(int, float)

The lhs variable, the result is stored here.

Rhs var / literal
(int, float)

Literal or variable to multiply lhs by.

Example

Multiplies the variable ‘i’ with 1.5 and stores it to ‘i’

add_var i 1

sub_var i 1

mul_var i 1500m

Page | 21

MethodSCRIPT v1.2
last document update: 22-4-2020

11.10 div_var

Divide “lhs” by “rhs” and store the result in “lhs”. Metadata of lhs is maintained. Accepts either integer or
floating point variables, but both arguments must match.

Arguments

Name Type

Lhs var
(int, float)

The lhs variable, the result is stored here.

Rhs var / literal
(int, float)

Literal or variable to divide lhs by.

Example

Divides the variable ‘i’ by 1.5 and stores it to ‘i’

11.11 set_e

Apply a variable or literal as the cell potential. This determines the potential (WE vs RE). The potential is
limited by the potential range of the currently active “pgstat mode” see section “PGStat mode
properties”.

Arguments

Name Type

Potential var / literal
(float)

The cell potential to apply in volts.

Example

Sets control value for the potentiostat loop to 0.1V.

11.12 wait

Wait for the specified amount of time.

Arguments

Name Type

Time var / literal
(float)

The amount of time to wait in seconds.

Example

Wait 100 milliseconds.

div_var i 1500m

set_e 100m

wait 100m

Page | 22

MethodSCRIPT v1.2
last document update: 22-4-2020

11.13 set_int

Configure the interval for the “await_int” command.

Arguments

Name Type

Interval var / literal
(float)

The interval time in seconds.

Example

Set interval to 100 milliseconds.

11.14 await_int

Wait for the next interval. This command allows the use of an asynchronous background timer to
synchronize the script to a certain interval.

Arguments

No arguments

Example

Set interval to 100 ms. Then execute a loop every 100 ms using await_int to synchronize the start of
each loop. Even though the loop takes a variable amount of time because of the variable “wait”
command, the loop will execute once every 100 ms.

set_int 100m

var t

store_var t 0 aa

set_int 100m

#loop until t wait time is higher than 50 ms

loop t <= 50m

 #wait for next interval of 100ms

 await_int

 #add 10 ms to wait time

 add_var t 10m

 #wait variable amount of time

 wait t

endloop

Page | 23

MethodSCRIPT v1.2
last document update: 22-4-2020

11.15 loop

Repeat all commands up to the next “endloop” until the specified condition is matched. All loops must
be terminated with an “endloop”. Accepts either integer or floating point variables, but if argument types
don’t match, they are compared as floats.

Arguments

Name Type

Stop condition
lhs

var / literal
(int, float)

Literal or variable to be compared with the rhs variable.

Stop condition
comparator

comparator Comparator indicating the type of comparison to make.

Stop condition
rhs

var / literal
(int, float)

Literal or variable to be compared with the lhs variable.

Example

Add 1 to i until variable “i” reaches 10. This example uses integer variables.

11.16 endloop

Signals the end of a loop, see “loop” command.

Arguments

No arguments.

11.17 breakloop

Breaks out of the current loop. The script will continue execution from the next “endloop”.

Arguments

No arguments.

var i

store_var i 0i aa

loop i < 10i

 add_var i 1i

endloop

Page | 24

MethodSCRIPT v1.2
last document update: 22-4-2020

11.18 if, elseif, else, endif

Conditional statements allow the conditional execution of commands. Every “if” statement must be
terminated by an “endif” statement. In between the “if” and “endif” statements can be any number of
“elseif” statements and/or one “else” statement. Accepts either integer or floating point variables, but if
argument types don’t match, they are compared as floats.

Arguments for if, elseif commands

Name Type

Condition lhs var / literal
(int, float)

Literal or variable to be compared with the rhs variable.

Condition
comparator

comparator Comparator indicating the type of comparison to make.

Condition rhs var / literal
(int, float)

Literal or variable to be compared with the lhs variable.

Example

One of the send_string commands will be executed, depending on the value of variable ‘a’.

11.19 meas

Measure a datapoint of the specified type and store the result as a variable. The datapoint will be
averaged for the specified amount of time at the maximum available sampling rate.

For supported value types of each device, refer to section “Supported variable types for meas
command”.

Arguments

Name Type

Time to measure var / literal
(float)

The amount of time to spend averaging measured data.

Destination var[out]
(float)

Variable to store the measured data in.

Var type var_type
The type of variable to measure, see section “Variable Types”.

Example

Measure the signal with the var_type: ba (VT_CURRENT) for 100ms and store the result in the variable
‘c’.

if a > 5

 send_string "a is bigger than 5"

elseif a >= 3

 send_string "a is lower than 5 but bigger than or equal to 3"

else

 send_string "a is lower than 3"

endif

meas 100m c ba

Page | 25

MethodSCRIPT v1.2
last document update: 22-4-2020

11.20 meas_loop_lsv

Perform a Linear Sweep Voltammetry (LSV) measurement and store the resulting current in a variable. An
LSV measurement scans a potential range in small steps and measures the current at each step.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out]
(float)

Output variable to store the set potential for this iteration.

Output current var[out]
(float)

Output variable to store the measured current in.

Begin potential var / literal
(float)

The begin potential for the LSV technique.

End potential var / literal
(float)

The end potential for the LSV technique.

Step potential var / literal
(float)

The potential increase for each step. Affects the amount of data
points per second, together with the scan rate. This is an
absolute step. The direction of the scan is determined by “Begin
potential” and “End potential”.

Scan rate var / literal
(float)

The scan rate of the LSV technique. This is the speed at which
the applied potential is ramped in V/s. Can only be positive.

<opt. argument> Optional
arg.

See chapter 9 for detailed information

Optional arguments

poly_we

Example

Perform an LSV measurement and send a data packet for every iteration. The data packet contains the
set potential and measured current. The LSV performs a potential scan from -500 mV to 500 mV with
steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per
second.

meas_loop_lsv p c -500m 500m 10m 100m

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Page | 26

MethodSCRIPT v1.2
last document update: 22-4-2020

11.21 meas_loop_cv

Perform a Cyclic Voltammetry (CV) measurement. In a CV measurement, the potential is stepped from
the begin potential to the vertex 1 potential, then the direction is reversed and the potential is stepped to
the vertex 2 potential and finally the direction is reversed again and the potential is stepped back to the
begin potential. The current is measured at each step.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out]
(float)

Output variable to store the set potential for this iteration.

Output current var[out]
(float)

Output variable to store the measured current in.

Begin potential var / literal
(float)

The begin potential for the CV technique.

Vertex 1 potential var / literal
(float)

The vertex 1 potential. First potential where direction reverses.

Vertex 2 potential var / literal
(float)

The vertex 2 potential. Second potential where direction
reverses.

Step potential var / literal
(float)

The potential increase for each step. Affects the amount of data
points per second, together with the scan rate. This is an
absolute step that does not affect the direction of the scan.

Scan rate var / literal
(float)

The scan rate of the CV technique. This is the speed at which the
applied potential is ramped in V/s. Can only be positive.

<opt. argument> Optional
arg.

See chapter 9 for detailed information

Optional arguments

poly_we
nscans

Example

Perform a CV measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. The CV performs a potential scan from 0 mV to 500 mV to -500 mV to 0
mV. The steps of 10 mV at a rate of 100 mV/s. This results in a total of 201 data points at a rate of 10
points per second.

meas_loop_cv p c 0 500m -500m 10m 100m

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Page | 27

MethodSCRIPT v1.2
last document update: 22-4-2020

11.22 meas_loop_dpv

Perform a Differential Pulse Voltammetry (DPV) measurement. In a DPV measurement, the potential is
stepped from the begin potential to the end potential. At each step, the current (reverse current) is
measured, then a potential pulse is applied and the current (forward current) is measured. The forward
current minus the reverse current is stored in the “Output current” variable.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out]
(float)

Output variable to store the set potential for this iteration.

Output current var[out]
(float)

Output variable to store “forward current – reverse current” in.

Begin potential var / literal
(float)

The begin potential for the potential scan.

End potential var / literal
(float)

The end potential for the potential scan.

Step potential var / literal
(float)

The potential increase for each step. Affects the amount of data
points per second, together with the scan rate. This is an
absolute step that does not affect the direction of the scan.

Pulse potential var / literal
(float)

The potential of the pulse. This is added to the currently applied
potential during a step.

Pulse time var / literal
(float)

The time the pulse should be applied.

Scan rate var / literal
(float)

The speed at which the applied potential is ramped in V/s. Can
only be positive. Scan rate must be lower than “Step potential /
Pulse time / 2”.

<opt. argument> Optional
arg.

See chapter 9 for detailed information

Optional arguments

poly_we

Example

Perform a DPV measurement and send a data packet for every iteration. The data packet contains the
set potential and “forward current – reverse current”. The DPV performs a potential scan from -500 mV
to 500 mV with steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of
10 points per second. At every step a pulse of 20mV is applied for 5ms

meas_loop_dpv p c -500m 500m 10m 20m 5m 100m

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Page | 28

MethodSCRIPT v1.2
last document update: 22-4-2020

11.23 meas_loop_swv

Perform a Square Wave Voltammetry (SWV) measurement. In a SWV measurement, the potential is
stepped from the begin potential to the end potential. At each step, the current (reverse current) is
measured, then a potential pulse is applied and the current (forward current) is measured. The forward
current minus the reverse current is stored in the “Output current” variable. The pulse length is “1 /
Frequency / 2”.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output
potential

var[out]
(float)

Output variable to store the set potential for this iteration.

Output current var[out]
(float)

Output variable to store “forward current – reverse current” in.

Output
forward
current

var[out]
(float)

Output variable to store forward current in.

Output reverse
current

var[out]
(float)

Output variable to store reverse current in.

Begin potential var / literal
(float)

The begin potential for the potential scan.

End potential var / literal
(float)

The end potential for the potential scan.

Step potential var / literal
(float)

The potential increase for each step. This is an absolute step that
does not affect the direction of the scan.

Amplitude
potential

var / literal
(float)

The amplitude of the pulse. This value times 2 is added to the
currently applied potential during a step.

Frequency var / literal
(float)

The frequency of the pulses.

<opt.
argument>

Optional
arg.

See chapter 9 for detailed information

Optional arguments

poly_we

Example

Perform a SWV measurement and send a data packet for every iteration. The data packet contains the
set potential and “forward current – reverse current”. The SWV performs a potential scan from -500 mV
to 500 mV with steps of 10 mV at a frequency of 10 Hz. This results in a total of 101 data points at a rate
of 10 points per second. At every step a pulse of 30mV (2*15mV) is applied for 50ms (1/Frequency/2).

meas_loop_swv p c f r -500m 500m 10m 15m 10

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Page | 29

MethodSCRIPT v1.2
last document update: 22-4-2020

11.24 meas_loop_npv

Perform a Normal Pulse Voltammetry (NPV) measurement. In an NPV measurement, the pulse potential
is stepped from the begin potential to the end potential. At each step the pulse potential is applied and
the current is measured at the top of this pulse. The potential is then set back to the begin potential until
the next step. The measured current is stored in the “Output current” variable.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out]
(float)

Output variable to store the set potential for this iteration.

Output current var[out]
(float)

Output variable to store the measured current in.

Begin potential var / literal
(float)

The begin potential for the potential scan.

End potential var / literal
(float)

The end potential for the potential scan.

Step potential var / literal
(float)

The pulse potential increase for each step. Affects the amount of
data points per second, together with the scan rate. This is an
absolute step that does not affect the direction of the scan.

Pulse time var / literal
(float)

The time the pulse should be applied.

Scan rate var / literal
(float)

The speed at which the applied potential is ramped in V/s. Can
only be positive. Scan rate must be lower than “Step potential /
Pulse time / 2”.

<opt. argument> Optional
arg.

See chapter 9 for detailed information

Optional arguments

poly_we

Example

Perform an NPV measurement and send a data packet for every iteration. The data packet contains the
set potential and measured pulse current. The NPV performs a potential scan from -500 mV to 500 mV
with steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points
per second. At every step a potential pulse of “step index * step potential” mV is applied for 5ms.

meas_loop_npv p c -500m 500m 10m 20m 5m 100m

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Page | 30

MethodSCRIPT v1.2
last document update: 22-4-2020

11.25 meas_loop_ca

Perform a Chrono Amperometry (CA) measurement. In a CA measurement, a DC potential is applied the
current is measured at the specified interval. The measured current is stored in the “Output current”
variable.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out]
(float)

Output variable to store the set potential for this iteration.

Output current var[out]
(float)

Output variable to store the measured current in.

DC potential var / literal
(float)

The DC potential to be applied.

Interval time var / literal
(float)

The interval between measured data points.

Run time var / literal
(float)

The total run time of the measurement.

<opt. argument> Optional
arg.

See chapter 9 for detailed information

Optional arguments

poly_we

Example

Perform a CA measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. A DC potential of 100 mV is applied. The current is measured every 100
ms for a total of 2 seconds. This results in a total of 20 data points at a rate of 10 points per second.

meas_loop_ca p c 100m 100m 2

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Page | 31

MethodSCRIPT v1.2
last document update: 22-4-2020

11.26 meas_loop_pad

Perform a Pulsed Amperometric Detection (PAD) measurement. In a PAD measurement, potential pulses
are applied to a DC potential. Each iteration starts at the DC potential, the current is measured before the
pulse (idc). Then the pulse potential is applied, and the current is measured at the end of the pulse
(ipulse). The output current returns a current value depending of one the 3 modes: dc (idc), pulse (ipulse)
or differential (ipulse – idc).

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out]
(float)

Output variable to store the set potential for this iteration.

Output current var[out]
(float)

Output variable to store “forward current – reverse current” in.

DC potential var / literal
(float)

The begin potential for the potential scan.

Pulse potential var / literal
(float)

The potential of the pulse. This is the potential that is set during a
pulse. It is not referenced to the DC potential.

Pulse time var / literal
(float)

The time the pulse should be applied.

Interval time var / literal
(float)

The time of the pulse interval

Run time var / literal
(float)

Total run time of the measurement

mode uint8 PAD mode : 1= dc , 2 = pulse , 3 = differential

<opt. argument> Optional
arg.

See chapter 9 for detailed information

Optional arguments

poly_we

Example

Perform a PAD measurement and send a data packet for every iteration. The data packet contains the
set potential and measured current. A DC potential of 500 mV is applied. A pulse potential of 1500mV is
applied every 50 ms for 10 ms and the current is measured on the pulse (mode = pulse). The
measurement is 10.05 seconds in total. This results in a total of 201 data points at a rate of 20 points per
second.

meas_loop_pad p c 500m 1500m 10m 50m 10050m 2

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Page | 32

MethodSCRIPT v1.2
last document update: 22-4-2020

11.27 meas_loop_ocp

Perform an Open Circuit Potentiometry (OCP) measurement. In an OCP measurement, the CE is
disconnected so that no potential is applied. The open circuit RE potential is measured at the specified
interval. The measured potential is stored in the “Output potential” variable.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out]
(float)

Output variable to store the measured RE potential in.

Interval time var / literal
(float)

The interval between measured data points.

Run time var / literal
(float)

The total run time of the measurement.

<opt. argument> Optional arg. See chapter 9 for detailed information

Example

Perform an OCP measurement and send a data packet for every iteration. The data packet contains the
set measured RE potential. The RE potential is measured every 100 ms for a total of 2 seconds. This
results in a total of 20 data points at a rate of 10 points per second.

meas_loop_ocp p 100m 2

 pck_start

 pck_add p

 pck_end

endloop

Page | 33

MethodSCRIPT v1.2
last document update: 22-4-2020

11.28 meas_loop_eis

Perform an EIS frequency scan and store the resulting Z-real and Z-imaginary in the given variables. EIS
does not currently support autoranging. High speed PGStat mode is required for EIS. The following
commands currently have no effect on EIS measurements:

• set_max_bandwidth: bandwidth is taken from frequency scan ranges.
• set_pot_range: pot range is taken from amplitude and DC potential arguments.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to

section “Measurement loop” for more information.

Arguments

Name Type

Output frequency var[out]
(float)

Output variable to store the set frequency for this iteration.

Output Z-real var[out]
(float)

Output variable to store the measured phase in.

Output Z-imaginary var[out]
(float)

Output variable to store the measured impedance in.

Amplitude var / literal
(float)

Amplitude of the applied sinewave.

Start frequency var / literal
(float)

Start frequency of the scan.

End frequency var / literal
(float)

End frequency of the scan.

Nr of points var / literal
(int, float)

Number of frequency points to be scanned.

DC potential var / literal
(float)

DC potential offset of the applied sinewave.

Example

Perform an EIS measurement a frequency f with 10mV amplitude and stores the Z-real result in r and the
Z-imaginary result in j. 11 points will be measured at frequencies between 100 kHz and 100 Hz, divided
on a logarithmic scale.

meas_loop_eis f r i 10m 100k 100 11i 0

 pck_start

 pck_add f

 pck_add r

 pck_add i

 pck_end

endloop

Page | 34

MethodSCRIPT v1.2
last document update: 22-4-2020

11.29 set_autoranging

Enable or disable autoranging for all meas_loop_* functions. Autoranging selects the most appropriate
current range for the current measured in the last measurement loop iteration. The selected current
range is limited by the min and max current arguments. If min expected current and max expected
current are the same value, autoranging is disabled.

Arguments

Name Type

Min current literal
(float)

The min current in this measurement.

Max current literal
(float)

The max current in this measurement.

 Example

Enable autoranging for currents between 1 uA and 1 mA.

11.30 pck_start

Signal the start of a measurement data packet.

Arguments

No arguments.

 Example

Signal the start of a new measurement package.

11.31 pck_add

Add a stored variable to be sent in this data packet.

Arguments

Name Type

Variable var
(int, float)

The variable to add to the data packet.

Example

Add variable ‘i’ to the data packet.

set_autoranging 1u 1m

pck_start

pck_add i

Page | 35

MethodSCRIPT v1.2
last document update: 22-4-2020

11.32 pck_end

Signal the end of a measurement data package.

Arguments

No arguments.

Optional arguments

meta_msk

Example

Signal the end of a measurement data package.

11.33 set_max_bandwidth

Set maximum bandwidth of the signal being measured. Any signal of significant higher frequency than
the set bandwidth will be filtered out. There is no defined lower bound to the bandwidth. At max
bandwidth the signal is attenuated by up to 1% of the potential or current step.

Arguments

Name Type

Max bandwidth var / literal
(float)

The maximum expected bandwidth expected. Anything below this
frequency will not be filtered out.

Example

Set the max bandwidth to a frequency of 1 kHz.

11.34 set_cr

Set the current range for the given maximum current. The device will select the lowest current range that
can measure this current without overloading.

Arguments

Name Type

Max current var / literal
(float)

The maximum expected current.

Example

Set current range to be able to measure a current of 500nA

Note: This command is ignored when autoranging is enable for meas_loop_eis.

pck_end

set_max_bandwidth 1k

set_cr 500n

Page | 36

MethodSCRIPT v1.2
last document update: 22-4-2020

11.35 cell_on

Turn the cell on, any settings set when the cell was off will be applied here.

Arguments

No arguments.

Example

Turn the cell on. The potentiostat will start applying the configured potential.

11.36 cell_off

Turn the cell off.

Arguments

No arguments.

Example

Turn the cell off. This stops the potentiostat from applying a potential to the cell.

11.37 set_pgstat_mode

Set the pgstat hardware configuration to be used for measurements. Setting the pgstat mode initializes
all channel settings to the default values for that mode. See section “PGStat Modes" for more
information.

Arguments

Name Type

PGStat mode uint8 Set pgstat mode:
0 = off
2 = low speed
3 = high power
4 = max range
5 = poly_we

Example

Set hardware configuration to high power mode.

cell_on

cell_off

set_pgstat_mode 3

Page | 37

MethodSCRIPT v1.2
last document update: 22-4-2020

11.38 send_string

Send an arbitrary string as output of the MethodSCRIPT. This string is prepended by a ‘T’, this is the
“text” package identifier. Avoid sending a ‘\n’ character or non-ASCII characters.

Arguments

Name Type

String string An arbitrary string. Surrounded by quotes (")

Example

Sends string “Thello world\n” as output of the MethodSCRIPT.

11.39 set_gpio_cfg

Set GPIO pins configuration. Pins can be configured as one of multiple supported modes. To use a pin in
a specific mode, it must be configured for that mode. See section “Device GPIO pin configurations ” for
available pin configurations per device.

Arguments

Name Type

Pin mask uint32 Bitmask that represents pins that will be configured with this
command.

Mode uint8 0 = GPIO Input
1 = GPIO Output
2 = Peripheral 1
3 = Peripheral 2

Example

Set pins 0 and 1 to GPIO output mode. The “0b” means that the following value is expressed in a binary
format.

send_string "hello world"

set_gpio_cfg 0b11 1

Page | 38

MethodSCRIPT v1.2
last document update: 22-4-2020

11.40 set_gpio_pullup

Enable or disable GPIO pin pullups.

Arguments

Name Type

Pin mask uint32 Bitmask that represents pins that will be configured with this
command.

Pullup uint8 0 = Pullup disabled
1 = Pullup enabled

Example

Enables pullup on pins 0 and 1. The “0b” means that the following value is expressed in a binary format.

11.41 set_gpio

Set GPIO pins. Pins with multiple roles that are not configured as GPIO output pins are ignored.

Arguments

Name Type

Pin mask var / literal
(int)

Bitmask that represents the state of the bits. Bit 0 is for GPIO0, bit
1 for GPIO1, etc. Bits that are high correspond with a high output
signal.

Example

Sets pin 0 and 1 high, the rest of the GPIO output pins is set low. The added ‘i’ is needed because
“set_gpio” only accepts integer variables.

11.42 get_gpio

Get GPIO pin values. Pins with multiple roles that are not configured as GPIO input pins are ignored.

Arguments

Name Type

Pin mask var[out]
(int)

Bitmask that represents the state of the bits. Bit 0 is for GPIO0, bit
1 for GPIO1, etc. Bits that are high correspond with a high input
signal.

Example

Read all GPIO pins configured as input and stores the bit mask representation of the high pins in variable
g.

set_gpio_pullup 0b11 1

set_gpio 0b11i

get_gpio g

Page | 39

MethodSCRIPT v1.2
last document update: 22-4-2020

11.43 set_pot_range

Set the expected potential range for this script. Some devices cannot apply their full potential range in
one measurement, but need to be set up to reach these potentials beforehand. This function lets you
communicate to the device what the voltage range is you expect in your measurement. The device will
automatically configure itself to be able to reach these potentials. This function will return an error if the
expected voltage range is greater than the dynamic potential range of the device, or if the expected
voltage range exceeds the maximum potential limits of the device.

This is a device specific command. The following devices require this command to reach their full
potential range:

• EmStat Pico

For these devices the voltage range that can be applied without changing the expected potential range is
defined in section “PGStat Modes” as the “dynamic potential range”.

Arguments

Name Type

Potential 1 var / literal
(float)

Bound 1 of the expected voltage range for this measurement.

Potential 2 var / literal
(float)

Bound 2 of the expected voltage range for this measurement.

Example

Ensure that the next measurement can apply potentials between 0 V and 1.2 V.

set_pot_range 0 1200m

Page | 40

MethodSCRIPT v1.2
last document update: 22-4-2020

11.44 set_pgstat_chan

Select a potentiostat channel. If the device has multiple parallel potentiostat channels, they can be
selected with this command. In the future it will be possible to use these two channels parallel to each
other, but this feature is not yet available. Refer to section “Other device specific properties” to see how
many channels each device has.

Arguments

Name Type

Channel index uint8 The pgstat channel index to select.

Example

Selects pgstat channel 0.

11.45 set_poly_we_mode

Selects the mode of the additional working electrode.

Arguments

Name Type

Poly_we_mode uint8 The mode of the additional working electrode:
0 = fixed mode (Additional WE is relative to RE)
1= offset mode (Additional WE is relative to main WE)

Example

The additional working electrode mode is set to offset mode.

11.46 get_time

Retrieves current time in seconds from the internal device clock. Resolution is dependent on the returned
time value (see table below for estimated resolution).

Arguments

Name Type

Time var[out]
(float)

The output variable to store the time in.

Example

Stores current time in variable ‘t’.

System time Resolution

<1 hour ≤1ms

1 to 24 hours ≤10ms

1 to 10 days ≤100ms

10 to 100 days ≤1s

≥100 days >1s

set_pgstat_chan 0

set_poly_we_mode 1

get_time t

Page | 41

MethodSCRIPT v1.2
last document update: 22-4-2020

11.47 file_open

Opens file on persistent storage. This file can be used to store script output to. To store script output to
this file, use the “set_script_output” command.

Arguments

Name Type

Path string The path to the file to open. May include folders.

Open mode uint8 0 = Create new file, if a file with the same name exists, it is
overwritten.
1 = Create new file, if a file with the same name exists, new data is
appended to it.
2 = Create new file, if a file with the same name exists, the file is not
opened and an error is returned.

Example

Creates a new file, overwriting any existing file with the same name.

11.48 file_close

Closes currently opened file on persistent storage. If no file is opened, the command is skipped.

Arguments

No arguments

Example

Closes the currently opened file.

11.49 set_script_output

Sets the output mode for the script. This affects where the measurement packages and other script
output are sent to.

Arguments

Name Type

Output mode uint8 0 = Disable the output of the script completely.
1 = Output to the normal output channel (Default)
2 = Output to file storage
3 = Output to both normal channel and file storage

Example

Script output is directed to file storage and normal output.

file_open "measurement.txt" 0

file_close

set_script_output 3

Page | 42

MethodSCRIPT v1.2
last document update: 22-4-2020

11.50 hibernate

Puts the device in hibernate mode (deep sleep).

Arguments

Name Type

Wakeup source
mask

uint8 Bitmask for wakeup sources
0x01 = UART
0x02 = Wakeup pin
0x04 = Wakeup timer

Wakeup time var / literal
(float)

Time in seconds after which the system is woken up by the system
timer. Time resolution is 125ms, STATUS_SCRIPT_BAD_ARG
(4002) will be thrown when time < 125 millisecond.

Example

Hibernate until the system is woken by the wake-up pin, UART or after 60 seconds.

NOTE:
The hibernate command will disable the internal ADT7420 temperature sensor on the EmStatPico
when GPIO8 and GPIO9 are configured for I2C to save more power. Power consumption with the
temperature sensor enabled is about 250µA higher that it would be with the sensor disabled. It is up
to the user to configure these pins for I2C prior to entering hibernate or disable the temperature
sensor manually. See 11.39 set_gpio_cfg for more information on configuring GPIO.

NOTE:
All channels settings are cleared, and channels are switched off in hibernate mode

11.51 i2c_config

Setup I2C configuration. This is required before using any other I2C command from MethodSCRIPT. The
I2C interface supported by MethodSCRIPT always works as master. Multi master mode is currently not
supported.

Arguments

Name Type

Clock speed var / literal
(int)

I2C clock speed. 100k (standard mode) and 400k (fast mode) are
officially supported.

Address mode literal (int) I2C addressing mode (7 or 10 bit)

Example

Configure I2C for standard mode with 7 bit address.

NOTE:
Make sure the I2C GPIO pins are configured for I2C. See 11.39 set_gpio_cfg for more information on
configuring GPIO.

hibernate 0x07i 60

i2c_config 100k 7

Page | 43

MethodSCRIPT v1.2
last document update: 22-4-2020

11.52 i2c_write_byte

Transmits one byte over I2C. Also generates I2C start and stop conditions. If a NAck (Not Acknowledge)
was received from the slave device the user should handle this and reset the Ack status variable.

Arguments

Name Type

Device address var / literal
(int)

Address of the slave device.

Transmit data var / literal
(int)

Data byte to transmit.

Ack status var[out] Result of the I2C operation.
0 = Ack received
1 = NAck received for address
2 = NAck received for data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

Write the value 3 to the device with address 0x48.

11.53 i2c_read_byte

Receive one byte over I2C. Also generates I2C start and stop condition. If a NAck (Not Acknowledge)
was received from the slave device the user should handle this and reset the Ack status variable.

Arguments

Name Type

Device address var / literal
(int)

Address of the slave device.

Receive data var (int) Variable to store received byte in.

Ack status var[out]
(int)

Result of the I2C operation.
0 = Ack received
1 = NAck received for address
2 = NAck received for data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

Receive one byte of data from device 0x48 and store it in variable “d”.

var a

store_var a 0 ja

i2c_write_byte 0x48i 0x03i a

var a

var d

store_var a 0 ja

i2c_read_byte 0x48i d a

Page | 44

MethodSCRIPT v1.2
last document update: 22-4-2020

11.54 i2c_write

Write the contents of an array over I2C. Also generates I2C start and stop conditions. If a NAck (Not
Acknowledge) was received from the slave device the user should handle this and reset the Ack status
variable.

Arguments

Name Type

Device address var / literal
(int)

Address of the slave device.

Transmit data array (int) Reference to array that contains the data to transmit.

Transmit count var / literal
(int)

Number of bytes to transmit.
Minimum value = 1, maximum value is 255 or size of the array.

Ack status var[out]
(int)

Result of the I2C operation.
0 = Ack received
1 = NAck received for address
2 = NAck received for data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

Transmit the values 12 (0x0C) and 34 (0x22) to the device with address 0x48.

var a

array w 2

array_set w 0i 12i

array_set w 1i 34i

store_var a 0 ja

i2c_write 0x48i w 2 a

Page | 45

MethodSCRIPT v1.2
last document update: 22-4-2020

11.55 i2c_read

Read a specified number of bytes from I2C. Also generates I2C start and stop conditions. If a NAck (Not
Acknowledge) was received from the slave device the user should handle this and reset the Ack status
variable.

Arguments

Name Type

Device address var / literal
(int)

Address of the slave device.

Received data array (int) Reference to array to store received data in.

Receive count var / literal
(int)

Number of bytes to receive.
Minimum value = 1, maximum value is 255 or size of the array.

Ack status var[out]
(int)

Result of the I2C operation.
0 = Ack received
1 = NAck received for address
2 = NAck received for data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

Receive 4 bytes from device 0x48 and store them in array “r”.

var a

array r 4

store_var a 0 ja

i2c_read 0x48i r 4 a

Page | 46

MethodSCRIPT v1.2
last document update: 22-4-2020

11.56 i2c_write_read

Transmit the contents of an array over I2C directly followed by reading multiple bytes to a second array.
Also generates I2C start and stop conditions. If a NAck (Not Acknowledge) was received from the slave
device the user should handle this and reset the Ack status variable. In contrast with i2c_read and
i2c_write this command does not generate a STOP-condition between writing and reading.

Arguments

Name Type

Device address var / literal
(int)

Address of the slave device.

Transmit data array (int) Reference to array that contains the data to transmit.

Transmit count var / literal
(int)

Number of bytes to transmit.
Minimum value = 1, maximum value is 255 or size of the array.

Received data array (int) Reference to array to store received data in.

Receive count var / literal
(int)

Number of bytes to receive.
Minimum value = 1, maximum value is 255 or size of the array.

Ack status var[out]
(int)

Result of the I2C operation.
0 = Ack received
1 = NAck received for address
2 = NAck received for data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

Write 2 bytes to device 0x48 followed by reading 4 bytes.

var a

array w 2

array r 4

array_set w 0i 12i

array_set w 1i 34i

store_var a 0 ja

i2c_write_read 0x48i w 2 r 4 a

Page | 47

MethodSCRIPT v1.2
last document update: 22-4-2020

11.57 abort

Aborts current code. If the “on_finished:” tag is used it will continue from there. Otherwise the script is
terminated without error.

Arguments

This method has no arguments.

Example

11.58 timer_start

For precise timing between two moments a timer can be set. This this timer can be (re)started with the
timer_start command after which timer_get will return a time relative to this start moment.

Arguments

This method has no arguments.

Example

var a

var d

store_var a 0 ja

i2c_read_byte 0x48i d a

if a != 0

 send_string "NAck received"

 abort

endif

Do something interesting with the data in ‘d’

var a

timer_start

Do something interesting here

Page | 48

MethodSCRIPT v1.2
last document update: 22-4-2020

11.59 timer_get

Read the time relative to the last call to “timer_start”. This method can be called multiple times without
changing the starting moment.

Arguments

Name Type

Relative time var[out]
(float)

The time relative to the last “timer_start” command

Example

NOTE:
Due to floating point number limitations the resolution is dependent on the returned time value. For a
time resolution of <1ms the relative time should not exceed 1 hour.

var a

timer_start

Do something interesting that takes a bit of time here

timer_get a

pck_start

Add a as a timestamp

pck_add a

Add other package data

pck_end

Page | 49

MethodSCRIPT v1.2
last document update: 22-4-2020

12 PGStat Modes

PGStat modes are device wide configurations that affect which hardware is used during measurements.
This is necessary for devices that have a choice between multiple measurement hardware with different
properties. PGStat modes are device specific, more information can be found in “PGStat mode
properties”.

12.1 PGStat mode off

All hardware is turned off to save power, no measurements can be done.

12.2 PGStat mode low speed

The hardware configuration that has the best properties for low speed measurements is picked. Usually
this means it is less sensitive to high frequency noise and consumes less power. However the maximum
bandwidth is limited.

12.3 PGStat mode high speed

The hardware configuration that has the best properties for high speed measurements is used. In
general, this will consume more power and be more sensitive to noise. However, it will allow higher
frequencies measurements to be done.

12.4 PGStat mode max range

This mode uses a hardware configuration having the highest possible potential range by combining the
high and low speed mode. In general, this will consume more power and be more sensitive to noise. The
bandwidth is limited to the bandwidth of the low speed mode.

12.5 PGStat mode poly_we

This mode combines the two channels forming a poly_we (bipot) device. In this mode one channel is
setup as the main potentiostat and the other as an additional working electrode (bipot).

Page | 50

MethodSCRIPT v1.2
last document update: 22-4-2020

13 Script examples

Note: The command terminators (\n) are not shown in the examples. These examples can be used on
any device that supports MethodSCRIPT, but they contain some commands that are device specific for
the EmStat Pico. These commands will be ignored on devices that do not use them.

13.1 EIS example

The following example script runs an EIS scan from 200 kHz down to 200 Hz over 11 points. After each
point a data packet will be sent containing the: frequency, Z-real, Z-imaginary variables. The amplitude of
the sine is set to 10m and no DC potential is applied.

Example output:

e

var h

var r

var j

#Select channel 0

set_pgstat_chan 0

#High speed mode is required for EIS

set_pgstat_mode 3

#Autorange starting at 1mA down to 10uA

set_autoranging 10u 1m

#Cell must be on to do measurements

cell_on

#Run actual EIS measurement

meas_loop_eis h r j 10m 200k 200 11 0

 #Send measurement package containing frequency, Z-real and Z-imaginary

 pck_start

 pck_add h

 pck_add r

 pck_add j

 pck_end

endloop

#Turn cell off when finished or aborted

on_finished:

cell_off

e ← ack of ‘e’ cmd
M000D ← start of measurement loop
Pdc8030D40 ;ccAAE483Fm,14,288;cd7FD3127 ,14,288 ← data package
… ← more data packages
Pdc8030D3Fm;cc80EDA04 ,14,287;cd9751491m,14,287 ← data package
* ← end of measurement loop
 ← newline indicating end of script

Page | 51

MethodSCRIPT v1.2
last document update: 22-4-2020

13.2 LSV example

The following example script runs an LSV from -0.5 V to 1.5 V with steps of 10 mV in 201 steps. The
scan rate is set to 100 mV/s. After each step, a data packet will be sent containing the set cell potential
and the measured WE current. The measured WE current will be used to autorange.

Example output:

e

var c

var p

#Select channel 0

set_pgstat_chan 0

#Low speed mode is fast enough

set_pgstat_mode 2

#Select bandwidth of 40 for 10 points per second

set_max_bandwidth 40

#Set up potential window between -0.5 V and 1.5 V, otherwise

#the max potential would be 1.1 V for low speed mode

set_pot_range -500m 1500m

#Set current range to 1 mA

set_cr 1m

#Enable autoranging, between current of 100 uA and 5 mA

set_autoranging 100u 5m

#Turn cell on for measurements

cell_on

#equilibrate at -0.5 V for 5 seconds, using a CA measurement

meas_loop_ca p c -500m 500m 5

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

#Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV

#and a scan rate of 100 mV/s

meas_loop_lsv p c -500m 1500m 10m 100m

 #Send package containing set potential and measured WE current.

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

#Turn off cell when done or aborted

on_finished:

cell_off

e ← ack of ‘e’ cmd
M0007 ← start of measurement loop (CA)
Pda7F85E36u;ba7F77484p,14,20B ← data package
… ← more data packages
Pda7F85E36u;ba7F77484p,14,20B ← data package
* ← end of measurement loop (CA)
M0000 ← start of measurement loop (LSV)
Pda816E55Fu;ba816DB89p,14,207 ← data package
… ← more data packages
Pda816E55Fu;ba816DB89p,14,207 ← data package
* ← end of measurement loop (LSV)
 ← newline indicating end of script

Page | 52

MethodSCRIPT v1.2
last document update: 22-4-2020

13.3 SWV example

The following example script runs a SWV from -0.5V to 0.5V with steps of 10 mV in 101 steps. After
each step, a data packet will be sent containing the cell potential for that step and current resulting from
the SWV measurement.

Example output:

e

var c

var p

var f

var g

set_pgstat_chan 0

set_pgstat_mode 2

#Set maximum required bandwidth based on frequency * 4,

#however since SWV measures 2 datapoints, we have to multiply the

#bandwidth by 2 as well

set_max_bandwidth 80

#Set potential window.

#The max expected potential for SWV is EEnd + EAmp * 2 – EStep.

#This measurement would also work without this command since it

#stays within the default potential window of -1.1 V to 1.1V

set_pot_range -500m 690m

#Set current range for a maximum expected current of 2 uA

set_cr 2u

#Disable autoranging

set_autoranging 2u 2u

#Turn cell on for measurement

cell_on

#Perform SWV

meas_loop_swv p c f g -500m 500m 10m 100m 10

 #Send package with set potential,

 #”forward current – reverse current”,

 #”forward current”

 #”reverse current”

 pck_start

 pck_add p

 pck_add c

 pck_add f

 pck_add g

 pck_end

endloop

#Turn off cell when done or aborted

on_finished:

cell_off

e ← ack of ‘e’ cmd
M0002 ← start of measurement loop
Pda7F85E36u;ba8030DDCp,10,202;ba7FB6915p,10,202;ba7F85B39p,10,202 ← data package
… ← more data packages
Pda807A1CAu;ba8030EB6p,10,202;ba80AB012p,10,202;ba807A15Cp,10,202 ← data package
* ← end of measurement loop
 ← newline indicating end of script

Page | 53

MethodSCRIPT v1.2
last document update: 22-4-2020

13.4 I2C example – temperature sensor

The example script below reads the 16bit temperature value from the ADT7420 sensor using I2C. This is
the internal temperature sensor on the Pico. Note that the senor has an I2C address 0x48.

e

Most significant bits

var m

Least significant bits

var l

Acknowledge

var a

Status / buffer register

var s

Array with Write data

array w 2

Array with Read data

array r 2

store_var a 0 ja

Configure I2C GPIOs and set it to 100k clock, 7 bit address

set_gpio_cfg 0x0300i 2

i2c_config 100k 7

Configure the sensor for 16bit mode with continuous conversion

array_set w 0i 0x03i

array_set w 1i 0x80i

i2c_write 0x48i w 2 a

Read back value

i2c_write_read 0x048i w 1 r 1 a

array_get r 0i s

if s != 0x80i

 send_string "ERROR: register did not change."

 abort

endif

Wait for temperature measurement to become ready

This takes about 250ms and can be read from bit 7 in register 0x02

wait 250m

store_var s 0x80i ja

array_set w 0i 0x02i

loop s & 0x80i

 i2c_write_byte 0x48i 0x02i a

 i2c_read_byte 0x48i s a

endloop

Read temperature values

i2c_write_byte 0x48i 0x00i a

i2c_read 0x48i r 2 a

array_get r 0i m

array_get r 1i l

Send values to user

pck_start

 pck_add m

 pck_add l

pck_end

Example output:

e
L
+
Paa800000Ai;aa80000E9i

← ack of ‘e’ cmd
← Start of loop
← End of loop
← Temperature data package

Page | 54

MethodSCRIPT v1.2
last document update: 22-4-2020

13.5 I2C example – Real time clock

The below example script demonstrates the use of I2C in combination with the S-35390 RTC that can
be found on the EmStat Pico development board. It sets the time and date to the arbitrary value of
2:14Am 29-8-97. Then It will wait 10 seconds and reads back the time.
e

var a

var d

store_var a 0i ja

var i

store_var i 0i ja

array r 7i

array w 7i

Year = '97

array_set w 0i 0xE9i

Month = August

array_set w 1i 0x10i

Day = 29

array_set w 2i 0x94i

Day of week = friday

array_set w 3i 0xA0i

Hour = 2 AM

array_set w 4i 0x40i

Minute = 14

array_set w 5i 0x88i

Seconds = 0

array_set w 6i 0x00i

Configure I2C GPIOs and set it to 100k clock, 7 bit address

set_gpio_cfg 0x0300i 2

i2c_config 100k 7

Write data to real-time data registers

i2c_write 0x32i w 7i a

Printing the time as it was written.

i2c_read 0x32i r 7i a

pck_start

store_var i 0i ja

loop i < 7i

 array_get r i d

 pck_add d

 add_var i 1i

endloop

pck_end

Wait ~10 seconds

send_string "Waiting for the time to change."

wait 9500m

Read data from real-time data registers

i2c_read 0x32i r 7i a

pck_start

store_var i 0i ja

loop i < 7i

 array_get r i d

 pck_add d

 add_var i 1i

endloop

pck_end

Page | 55

MethodSCRIPT v1.2
last document update: 22-4-2020

Example output:

e
PL
aa80000E9i;aa8000010i;aa8000094i;aa80000A0i;aa8000040i;aa8000088i;aa8000000i+

TWaiting for the time to change.
PL
aa80000E9i;aa8000010i;aa8000094i;aa80000A0i;aa8000040i;aa8000088i;aa8000008i+

The raw communication over I2C is displayed below. The top line contains the SCL, the line below that is
SDA. The bottom lines of each row represent the interpreted data.

Page | 56

MethodSCRIPT v1.2
last document update: 22-4-2020

14 Error handling

Errors can occur that prevent the execution of the MethodSCRIPT. These errors can occur either during
the parsing of the script or during the execution of the script (runtime). If the error occurs during parsing,
the line nr and character nr where the error occurred will be reported. During runtime, only the line nr will
be reported. A command that returns an error will not return an extra newline ‘\n’ after the newline of the
error message.

Parsing error format:

Runtime error format:

Where:
XXXX = The error code, see “Table 7: Error codes”
L = Line nr, starting at 1
C = Line character nr, starting at 1

The reported line number for runtime errors does not count comment lines. For parsing errors, the
comment lines do count.

Code
(Hex)

Name Description

0001 STATUS_ERR An unspecified error has occurred

0002 STATUS_INVALID_VT An invalid Value Type has been used

0003 STATUS_UNKNOWN_CMD The command was not recognized

0004 STATUS_REG_UNKNOWN Not applicable for MethodSCRIPT

0005 STATUS_REG_READ_ONLY Not applicable for MethodSCRIPT

0006 STATUS_WRONG_COMM_MODE Not applicable for MethodSCRIPT

0007 STATUS_BAD_ARG An argument has an unexpected value

0008 STATUS_CMD_BUFF_OVERFLOW Command exceeds maximum length

0009 STATUS_CMD_TIMEOUT The command has timed out

000A STATUS_REF_ARG_OUT_OF_RANGE A var has a wrong identifier

000B STATUS_OUT_OF_VAR_MEM Cannot reserve the memory needed for
this var

000C STATUS_NO_SCRIPT_LOADED Cannot run a script without loading one
first

000D STATUS_INVALID_TIME The given (or calculated) time value is
invalid for this command

000E STATUS_OVERFLOW An overflow has occurred while
averaging a measured value

000F STATUS_INVALID_POTENTIAL The given potential is not valid

0010 STATUS_INVALID_BITVAL A variable has become either “NaN” or
“inf”

0011 STATUS_INVALID_FREQUENCY The input frequency is invalid

0012 STATUS_INVALID_AMPLITUDE The input amplitude is invalid

0013 STATUS_NVM_ADDR_OUT_OF_RANGE Not applicable for MethodSCRIPT

!XXXX: Line L, Col C\n

!XXXX: Line L\n

Page | 57

MethodSCRIPT v1.2
last document update: 22-4-2020

0014 STATUS_OCP_CELL_ON_NOT_ALLOWED Cannot perform OCP measurement
when cell on

0015 STATUS_INVALID_CRC Not applicable for MethodSCRIPT

0016 STATUS_FLASH_ERROR An error has occurred while reading /
writing flash

0017 STATUS_INVALID_FLASH_ADDR An error has occurred while reading /
writing flash

0018 STATUS_SETTINGS_CORRUPT The device settings have been
corrupted

0019 STATUS_AUTH_ERR Not applicable for MethodSCRIPT

001A STATUS_CALIBRATION_INVALID Not applicable for MethodSCRIPT

001B STATUS_NOT_SUPPORTED This command or part of this command
is not supported by the current device

001C STATUS_NEGATIVE_ESTEP Step Potential cannot be negative for
this technique

001D STATUS_NEGATIVE_EPULSE Pulse Potential cannot be negative for
this technique

001E STATUS_NEGATIVE_EAMP Amplitude cannot be negative for this
technique

001F STATUS_TECH_NOT_LICENCED Product is not licenced for this
technique

0020 STATUS_MULTIPLE_HS Cannot have more than one high speed
and/or max range mode enabled
(EmStat Pico)

0021 STATUS_UNKNOWN_PGS_MODE The specified PGStat mode is not
supported

0022 STATUS_CHANNEL_NOT_POLY_WE Channel set to be used as Poly WE is
not configured as Poly WE

0023 STATUS_INVALID_FOR_PGSTAT_MODE Command is invalid for the selected
PGStat mode

0024 STATUS_TOO_MANY_EXTRA_VARS The maximum number of vars to
measure has been exceeded

0025 STATUS_UNKNOWN_PAD_MODE The specified PAD mode is unknown

0026 STATUS_FILE_ERR An error has occurred during a file
operation

0027 STATUS_FILE_EXISTS Cannot open file, a file with this name
already exists

0028 STATUS_ZERO_DIV Variable divided by zero

0029 STATUS_UNKNOWN_GPIO_CFG GPIO pin mode is not known by the
device

002A STATUS_WRONG_GPIO_CFG GPIO configuration is incompatible with
the selected operation

4000 STATUS_SCRIPT_SYNTAX_ERR The script contains a syntax error

4001 STATUS_SCRIPT_UNKNOWN_CMD The script command is unknown

4002 STATUS_SCRIPT_BAD_ARG An argument was invalid for this
command

4003 STATUS_SCRIPT_ARG_OUT_OF_RANGE An argument was out of range

4004 STATUS_SCRIPT_UNEXPECTED_CHAR An unexpected character was
encountered

Page | 58

MethodSCRIPT v1.2
last document update: 22-4-2020

4005 STATUS_SCRIPT_OUT_OF_CMD_MEM The script is too large for the internal
script memory

4006 STATUS_SCRIPT_UNKNOWN_VAR_TYPE The variable type specified is unknown

4007 STATUS_SCRIPT_VAR_UNDEFINED The variable has not been declared

4008 STATUS_SCRIPT_INVALID_OPT_ARG This optional argument is not valid for
this command

4009 STATUS_SCRIPT_INVALID_VERSION The stored script is generated for an
older firmware version and cannot be
run

400A STATUS_SCRIPT_INVALID_DATATYPE The parameter datatype (float/int) is not
valid for this command

400B STATUS_SCRIPT_NESTED_MEAS_LOOP Measurement loops cannot be placed
inside other measuments loops

400C STATUS_SCRIPT_UNEXPECTED_CMD Command not supported in current
situation

400D STATUS_SCRIPT_MAX_SCOPE_DEPTH Scope depth too large

400E STATUS_SCRIPT_INVALID_SCOPE The command had an invalid effect o
scope depth (for example "if" directly
followed by an "endif" statement)

400F STATUS_SCRIPT_INDEX_OUT_OF_RANGE Array index out of bounds

4010 STATUS_SCRIPT_I2C_NOT_CONFIGURED I2C interface was not initialized with
i2c_config command

4011 STATUS_SCRIPT_I2C_UNHANDLED_NACK NAck flag not handled by script

4012 STATUS_SCRIPT_I2C_ERR Something unexpected went wrong.
Could be a bug in the firmware

4013 STATUS_SCRIPT_I2C_INVALID_CLOCK I2C clock frequency not supported by
hardware

4014 STATUS_SCRIPT_HEX_OR_BIN_FLT Non integer SI vars cannot be parsed
from hex or binary represention

4015 STATUS_INVALID_WAKEUP_SOURCE The selected (combination of) wake-up
source is invalid

4016 STATUS_WAKEUP_TIME_INVALID RTC was selected as wake-up source
with invalid time argument

7FFF STATUS_FATAL_ERROR A fatal error has occurred, the device
must be reset

Table 7: Error codes

Page | 59

MethodSCRIPT v1.2
last document update: 22-4-2020

15 Device specific information

15.1 PGStat mode properties

EmStat Pico

Low speed mode Value min Value max

Bandwidth 0.016 Hz 100 Hz

Potential range -1.25 V 2.0 V

Dynamic potential
window

2.2 V 2.2 V

High speed mode Value min Value max

Bandwidth 0.016 Hz 200 kHz

Potential range -1.7 V 2.0 V

Dynamic potential
window

1.214 V 1.214 V

Max range mode Value min Value max

Bandwidth 0.016 Hz 100 Hz

Potential range -1.7 V 2.0 V

Dynamic potential
window

2.6 V 2.6 V

Table 8: EmStat Pico PGStat mode properties (see EmStat Pico datasheet for more information)

Page | 60

MethodSCRIPT v1.2
last document update: 22-4-2020

15.2 Current ranges

EmStat Pico

Low speed mode
current ranges

Current follower resistor Current range index

100 nA 10 MOhm 0x0

1.95 uA 512 kOhm 0x1

3.91 uA 256 kOhm 0x2

7.81 uA 128 kOhm 0x3

15.63 uA 64 kOhm 0x4

31.25 uA 32 kOhm 0x5

62.5 uA 16 kOhm 0x6

125 uA 8 kOhm 0x7

250 uA 4 kOhm 0x8

500 uA 2 kOhm 0x9

1 mA 1 kOhm 0xA

5 mA 200 Ohm 0xB

High speed mode
current ranges

Current follower resistor Current range index

100 nA 10 MOhm 0x80

1 uA 1 MOhm 0x81

6.25 uA 160 kOhm 0x82

12.5 uA 80 kOhm 0x83

25 uA 40 kOhm 0x84

50 uA 20 kOhm 0x85

100 uA 10 kOhm 0x86

200 uA 5 kOhm 0x87

1 mA 1 kOhm 0x88

5 mA 200 Ohm 0x89

Max range mode
current ranges

Current follower resistor Current range index

100 nA 10 MOhm 0x80

1 uA 1 MOhm 0x81

6.25 uA 160 kOhm 0x82

12.5 uA 80 kOhm 0x83

25 uA 40 kOhm 0x84

50 uA 20 kOhm 0x85

100 uA 10 kOhm 0x86

200 uA 5 kOhm 0x87

1 mA 1 kOhm 0x88

5 mA 200 Ohm 0x89

Table 9: EmStat Pico current ranges

Page | 61

MethodSCRIPT v1.2
last document update: 22-4-2020

15.3 Supported variable types for meas command

EmStat Pico

Variable types

VT_POTENTIAL

VT_POTENTIAL_CE

VT_POTENTIAL_RE

VT_POTENTIAL_WE_VS_CE

VT_POTENTIAL_AIN0

VT_POTENTIAL_AIN1

VT_POTENTIAL_AIN2

VT_CURRENT

Table 10: EmStat Pico measurable variable types

15.4 Device GPIO pin configurations

EmStat Pico

Bitmask Pin name Mode 0 Mode 1 Mode 3

0x0001 GPIO0_PWM GPIO
Input

GPIO
Output

PWM (Not implemented)

0x0002 GPIO1_SPI_MISO GPIO
Input

GPIO
Output

SD card

0x0004 GPIO2_SPI_CLK GPIO
Input

GPIO
Output

SD card

0x0008 GPIO3_SPI_MOSI GPIO
Input

GPIO
Output

SD card

0x0010 GPIO4_SPI_CS0 GPIO
Input

GPIO
Output

SD card

0x0020 GPIO5 GPIO
Input

GPIO
Output

0x0040 GPIO6 GPIO
Input

GPIO
Output

0x0080 GPIO7_WAKE GPIO
Input

GPIO
Output

Wake from sleep (Active low)

0x0100 I2C_SCL GPIO
Input

GPIO
Output

I2C

0x0200 I2C_SDA GPIO
Input

GPIO
Output

I2C

Table 11: EmStat Pico GPIO pin configurations

Page | 62

MethodSCRIPT v1.2
last document update: 22-4-2020

15.5 Other device specific properties

Property EmStat Pico

Number of pgstat channels 2

File storage SD card (SPI)

Table 12: Other device specific properties

Page | 63

MethodSCRIPT v1.2
last document update: 22-4-2020

16 Version changes

Version 1.1 Rev 1

• Added support for EmStat Pico firmware v1.1
• Added “Tags” chapter
• Added Max range pgstat mode for the EmStat Pico
• Added BiPot / Poly WE support
• Added PAD technique
• The ‘e’ command now replies with an extra ‘\n’ to separate the script response from the ‘e’

command response
• Added ability to use whitespace in script (tabs and spaces)
• Added error code documentation

Version 1.1 Rev 2

• Corrected EIS auto ranging information
• Added information about loop command output

Version 1.1 Rev 3

• Corrected OCP parameters, does not have set potential
• Corrected set_pgstat_chan command example
• Corrected SWV example comment about bandwidth
• Correct loop example “add” command should be “add_var”
• Corrected inconsistent names for low power / low speed mode

Version 1.1 Rev 4

• Corrected endloop command was sometimes called end_loop

Version 1.2 Rev 1

• Added conditional statements (if, else, elseif, endif)
• Added abort command
• Added breakloop command
• Added external storage (SD Card) commands
• Added new variable types
• Added supported variable types table
• Added bitwise operators
• Added new GPIO commands (get_gpio, set_gpio_cfg, set_gpio_pullup)
• Added support for integer variables
• Updated error codes
• Added get_time command
• Added timer_start and timer_get commands
• Added set_int, await_int commands
• Added ability to input hexadecimal or binary values
• Added support for arrays
• Added support for specifying what metadata to send in measurement packages
• Added nscans optional parameter for Cyclic Voltammetry
• Added hibernate command
• Added I2C interface
• Added I2C example

