€ PalmSens

Compact Electrochemical Interfaces

MethodSCRIPT ™

MethodSCRIPT communication protocol v1.3

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

Contents
L (gt geTe (U o1 1To] o FO T T TP TP PP P TP PP PUPPPRPRPPON 6
2 FBAIUIES ettt et e e et e e e s e s 7
2.1 FEAIUNES ..ttt e e 7
2.2 Planned fUTUIE TEATUIESoooi it a e 7
2.3 TN o] ole] g =T le (oY o= O P URTPOTPPT 7
G Tor g o) o .01 PR EUPTR PRI 8
4 MethOASCRIPT VAIADIESeeiiiiiiiieei et e e e e e e nnees 8
41 Script COMMANA VANADIESieeiii it e e e e s a e e e e s s s enrre e aeeeas 9
4.2 Measurement data package variabIES ..o, 9
5 Interpreting measurement data PACKAGEScceiiiiiiiiiiiiee e 10
5.1 PaCKage fOMMAL ... 10
5.2 Variable sub package fOrmMat.........oouiiiiiiii e 11
5.3 Package parsing EXAMIPIEouiiiiiiiieeee e 12
6 Measurement 100D COMMEANTAS ...ccoiiiiiiiiiiiie ettt e e et e e e e e e eeeeas 12
6.1 Measurement 00D EXAMIPIEuieiiiieee e 12
6.2 Measurement l0OP OULDUL ..ot e e s e e e e s et areeeeeas 13
A = g = o Lo Y/ o 1= T OSSPSR 14
S Toi o a=Tce [V g T=T T A 1Y o T PSRRI 16
8.1 12 LT PTTTPTTTPRPRTRIN 16
8.2 [EEIAL .ottt e et aeeas 16
8.3 1= LN/ 0 1= TP TR PTTTPRTTPRPRTRPN 16
8.4 integer (int8, iNt16, INt32, Uint8, UINtT6, UIN32)coiiiiiee e 16
8.5 (ol0] 0] 0= £=1 0] ST PO UOUPPPPPTTTRI 16
8.6]| T O O PP PP PP TPPPR 16
8.7 OPLONAI GIGUMENTS ...ttt ettt et e st e e e 16
O OPHONGI BrGUMENTS. ...eeiitieiii ettt b ettt 17
9.1 010V T O PR P P PP TTPOPPPPPN 17
9.2 17> 0 1< TP PP PPPTTTRRPPPPPPPPIN 18
9.3 (L= = 1] R 18
9.4 21T (e [PRSP TPPPP 19
9.5 < o] o OO ST UPTRTRTPO 20
9.6 < Tt o (o TP TP PPRR PO 21
10 =T L T T T T P PP PP P PP TPPPTP 23
TOT ON_FINISNEA: L.t 23
11 Tl o] oo] a1 471 0T L PRSP 24
B P B = L PP P PP P PP PP PP PPPPPPP 24
B B (o] =T OO UP TR PRI 24
B G R 14 | O TP UO TP TTPPPPPPR 25
T 04 AITAY _SBT eiiii 25
Page | 2

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

T AT AY QBT i ———————— 25
T 108 COPY VA ettt 26
B = To [- T USRI 26
T8 QU VA et e e e e e et e e e e e et aaaeeas 26
B RS T 0 10 | = LU OTR T TPRPPPPR 27
B P o Y LU OTR TP 27
B P T T o1 = T = T PSPPSR 27
B P 2 o1 Ao - T O PSP PURPPPP 28
B R T o1 A (o TG V7 | (T TP T PP TP PP PP TP PR TPPPPPPPN 28
B R o1 A = Y- U PUT TP 28
B I R T o] A TV 7= LSRR 29
B TP ST o A 0 V2= L OO 29
B P I A 0 A o T [= | O PRSP PUR PP 29
B P R S T = L (o T [SO PO PPPR 30
T OBl B it e 30
B 2O I =T PP PPPR 30
B 2 R) PSP PPPP 31
I 202 ST [| TSP 31
2R T\ L | O PSPPI 31
B B2 o T o B TP T TP PP U OT PP TTPPPPPPPN 32
T 20 BNAIOOD ettt e e a e as 32
B 24 T o =72 {0 o] o 1RSSR 32
11.27 if, €1SEIf, BISE, BN ... 33
F 128 MNIBAS .ttt 33
T1.29 MBAS_IOOPD_ISV ittt 34
T1.80 MEAS 00D ISPttt e e 35
T1.8T MEAS_IOOD_CV ettt ettt e e et a e e a s 36
B IR 2 o T Y= S (oY o T [2R 37
B IR G T 0 T Y= S 0] o K=Y 38
B IR o T Y= S oY o T)Y 39
RGO I 0 1= K T (o To] o o7 F OO O P TR T RTPRPPPPP 40
LG O I 0 g1 Y= K T (o To] o e o FEU T T OO T O PP P TR TR TPRPPPPP 41
11,37 MEAS_IOOPD_PAA. . ettt e et a e e e aa e s 42
IR T o T Y= S 0] o 1 o H 43
B T o T = o 00 o = 44
B O T o T = R 00T o N 1= 45
1147 SEE_AULOTANGTING -.vvtieiitie ettt et ettt e st 46
TT42 POK ST ettt e e et as 47
B G T oo (= To o [T OO P TP PRPPPPP 47
o T G =) T a7
Page | 3

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.45 Set_mMax_DanAWIATNeei e s 48
B It o g (o [=To =T 0= =Y) SRR 48
T 047 OBl TANGE i —————— 49
11,48 SEL_IANGE_IMINIMABX 1eiiitiiieiitie ettt e et bt e e ettt e e ettt e e et e e e e 50
B e o= o PP ST 51
B R o= o1 TS OTR PSPPI 51
T11.57 SEt_PGSIAl_IMOAE ... ————— 51
T1.52 SENA_STING ettt ————— 53
1158 S _GPI0_ Ol it ——————— 53
T1.54 SO _gDIO_PUIUD «ee ettt e e ettt e e e e e e ettt e e e e e e e et aaeeas 54
B R TS Tt oo o TSSOSO 54
T80 GO g0 ittt 54
11.57 set_pot_range (AEPreCatEd).......cuuiiiiiiiie e 55
T1.58 SEE_POSIAl _ChaN...cc e 57
T11.59 SEL_POIY_WE_MOTE ...ttt e e eeeeas 57
B R 1 o T A 1 YOO 57
T 0BT il O BN e ———————— 58
I G Y2 {1 1S Y o] 01T TR 58
T1.63 SE_SCHIPT_OULDUL ...ttt e et e e e e e et e e e e s 58
T1.84 NIDEINATIE ...ttt e e et e s 59
TT1.B5 120 _CONTIG ettt 59
IS I 2T Y Y) (Y 01 = 60
T1B7 120 A0 DY B e —————————— 61
I TG ST 2 oY1= T 62
TTUB9 H2C_FBAA ..t e s 63
T1.70 J2C_WITE_IBAA ...ttt e et e e e e e et eeeeeas 64
B A T o To] o AT TP T OO TP TP PRPPPPPN 65
B 2 {0 =T) 7= s 65
B G T (10 1Y o T USSP 66
174 SBE O ANNE _SYNC .. e ———————— 66
1175 SEt_aCqUISTHION_FIAC ... ettt ettt e e e et e e 67
12 S rc L1, [oTe [T TSRS PRUPPPPSPPPR 68
12,1 PGSat MOAE Off 1ottt e et e e e tbe e e e 68
12.2 PGStat MOTE I0W SPEEA ..vviiiiiiiiiiiiie ettt e e e e e s e e e e e s s st e e e e e e s s e nnaanrreaees 68
12.3 PGStat Mode NG SPEEAoii et e e e e e s 68
12,4 PGStat MOGE MAX FANGE tttiiieiiiiiiiiiie e e e e ettt e e e e e st e e e e e s s st eaeeeassssraaataaeeeessssrranreeeees 68
12.5 PGStat MOTE POIY_WE ..iiiiiiiiiieiiiiie ettt et e et e e et e e e et e e e e srtbeeeeanees 68
12.6 PGStat MOde GalVanOSTaLeiiiiiiiieii e 68
12,7 PGSat MOAE OCP ...ttt e e et e e e st e e e s b e e e e enees 68
13 SCIIPT BXAMPIES ..eieeeii ittt e e e e e e st e e e e s ettt e e e e e e s e e et r e e e e e e n e rrarraeees 69
Page | 4

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

G T B o == L 0])= SRS 69
TB.2 LSV EXAMIPIE cereieii ittt e e e —— e e e et e e e e n s aaaan 70
183 SWWV BXAMIPIE. .ot i i ittt e e e e e e e e a e e e e et e e e e n b aaaan 72
13.4 120 example — tEMPEratUre SENSONcoii ittt e e e e e e e es 74
13.5 120 example — Real tIMeE CIOCKuiiiiiiiiiiiiiice e 75
13.6 120 example - EEPROM EXAMPIE......ciiiiiiiiiiiiiiee ettt e e 77
14 e o) gl =g o 1 T 79
15 Device specCific INfOrMAatioNccooeii i 83
15,1 PGStat MOAE PIrOPEITIES .vvieiiiiiiiiiiiie et e e e e e s st e e e e e e s s e raarreaaees 83
15.2 (G) EIS PIOPEITIES ...ttt e e e as 84
T5.3 HIDEIMATE .ot e e 84
154 CUIMENE FANGES . ettt et et bt e e ettt e e et e e st e e e e nees 85
15.5 Supported variable types for meas CoOmMMEaNdcooiiiieiiiiiieeiiiiee e 87
15.6 Device GPIO PIN CONfIGUIATIONS ..uvvieiiiiiiee sttt e et e e e e e enees 88
15.7 Other deviCe SPECITIC PrOPEIIES . .vviiiiiiiieeiiiiie ettt 89
16 VEISION CRANGES ... ettt e et e et e et e e 90
Page | 5

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

1 Introduction

The MethodSCRIPT scripting language is designed to improve the flexibility of the PaimSens potentiostat
and galvanostat devices for OEM users. It allows users to start measurements with arguments that are
similar to the arguments in PSTrace.

PalmSens provides libraries and examples for handling low level communication and generating scripts
for MethodSCRIPT devices such as the EmStat Pico and EmStat4.

Terminology

PGStat: Potentiostat / Galvanostat

EmStat: PGStat device series by PalmSens

CE: Counter Electrode

RE: Reference Electrode

WE: Working Electrode

RHS: Right hand side

LHS: Left hand side

Technique: A standard electrochemical measurement technique
lteration: A single execution of a loop

Int: integer value

Signed integer: Integer value that can be negative

Unsigned integer: integer value that can only zero or higher

Uint8 / uint16: unsinged integer constructed of 8 and 16 bits respectively
Float: floating point number (e.g. 123.456)

Sl: International System of Units

Var: (MethodSCRIPT) variable (usually command input).

Var[out]: Variable that will be used for command output.

Var[in/out]: Variable which value is both used as command input and output.
HEX: hexadecimal, base16, number (e.g. OxA1)

Page |6 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

2 Features

2.1 Features

e Measurements can be tested in PSTrace and then exported to MethodSCRIPT. This allows for
convenient testing of different measurements in PSTrace. The resulting MethodSCRIPT can then
be easily imported as a text file and executed from within the user application. PSTrace can also
run custom scripts and is able to plot the resulting measurement data.

e Support for the following electrochemical techniques™:

o Chronoamperometry (CA)

Linear Sweep Voltammetry (LSV)

Cyclic Voltammetry (CV)

Differential Pulse Voltammetry (DPV)

Square Wave Voltammetry (SWV)

Normal Pulse Voltammetry (NPV)

Pulsed Amperometric Detection (PAD)

Electrochemical Impedance Spectroscopy (EIS)

Galvanostatic Electrochemical Impedance Spectroscopy (GEIS)

Open Circuit Potentiometry (OCP)

Chronopotentiometry (CP)

o Linear Sweep Potentiometry (LSP)
e Storing of measuring data to onboard storage (if available on hardware).
Support for BiPot / Poly WE
Different measurements can be chained after one another in the same script, making it possible
to combine multiple measurements without communication overhead.

e Conditional statements (if, else, elseif, endif)

Up to 26 variables or arrays can be stored and referenced to from within the script. This allows

for fast burst measurements that are not slowed down by communication.

Simple math can be performed on variables (add, sub, mul, div).

Loops and conditional logic support.

Support for user code during a measurement step.

Exact timing control.

Script syntax will be verified when loading. Runtime errors are checked during execution.

Autorun script at start-up from persistent memory.

Low power modes (sleep, hibernate).

Direct control over GPIO and the 12C interface for communication with external sensors and

actuators.

O O O 0O O O o0 O O O

2.2 Planned future features

e The following techniques are planned:
o Fast Chronoamperometry (FCA)
o Fast Cyclic Voltammetry (FCV)
o AC Voltammetry (ACV)

2.3 Supported devices

e EmStat Pico
e EmStat4

" Not all techniques are supported by every instrument.

Page |7 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

3 Script format

The script consists of a series of pre-defined commands. Each command starts with the command
string, followed by a pre-defined number of arguments. Arguments are separated by a * * (space)
character. Each command is terminated by a \n’ (newline) character. The ‘\n’ is omitted in most
examples. Each line is limited to a maximum of 128 characters. Comments can be added by having the
first non-whitespace character on the line be ‘#’.

To send a script to the device, first send “e\n”. This sets the device into MethodSCRIPT mode. To
terminate the script, add a line containing only a “\n’.

The following example shows a short script that simply declares a variable, including the ‘\n’ characters:
e\n

#This is a comment\n

send string "hello world "\n

\n

The response to this script will be:

e\n «— Ack of the execute script cmd ‘e’
Thello world\n < Reply of the “send string "hello world"” cmd
\n «— End of script

4 MethodSCRIPT variables

MethodSCRIPT variables represent numerical values that can be used within the script. They can be
stored internally as either floating point or as signed integer. Some commands only accept integer
variables, others will only accept floating point variables, this is indicated in the command parameter
table.

Floating point variables are represented as a signed integer value with an Sl prefix. Despite the name, this
Sl prefix is added after the integer value. See “Table 1: Sl prefix conversion table” for the available Sl
prefixes. Only Sl prefixes available in this table can be used. For example, a variable with a value of “100”
and a prefix of “m” translates to a floating point value of 0.1. Operations involving floating point numbers
often introduce (tiny) rounding errors. This makes floating point numbers less suitable when an exact
integer value is expected, such as with counters in loops.

Sl prefix Text Factor
'a’ atto 1018
'f' femto 10"
P pico 10"
n' nano 10°
u' micro 10°
‘m' milli 103
v none 1
'k’ kilo 10°
'™M' mega 10°
'G' giga 10°
T tera 102
'P' peta 10%
'E' exa 108

Table 1: Sl prefix conversion table

Page | 8

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

Integer variables end with an ‘i’ instead of an S| prefix. They are represented as 32 bit signed integers.
Integers are not subject to rounding, except when dividing two integers.

Variables are not explicitly linked to a unit; instead the unit is implied by the associated “Variable Type”.
Refer to section “Variable Types” for more information. Representation of MethodSCRIPT variables
changes depending on whether the variable is part of a script command or part of a measurement data
package.

Some number input parameters are not MethodSCRIPT variables. These include uint8, uint16, uint32,
int8, int16, int32. For these integer parameters, it is allowed but not necessary to append an ‘i'. They do
not accept Sl Prefixes.

4.1 Script command variables

Variables that are part of the MethodSCRIPT sent to the device are represented as a signed integer
followed by a prefix for floating point values, or ‘i* for integer values. If no prefix is provided, the number is
assumed to be floating point.

Integer variables can also be entered in hexadecimal or binary representation by prefixing the value with
Ox or Ob respectively. In which case the ‘i’ at the end of the number is optional. Hexadecimal and binary
representations are not allowed for floating point variables and cannot end with an SI prefix.

Example 1:

2551
OxXFF
Obl1111111

Above example shows the integer value of the decimal number “255” using decimal, hexadecimal and
binary representation. Note in the ‘i’ is omitted for the hexadecimal and binary values in this example.

Example 2:
500m

Above example shows the floating point number 0.5. It is stored internally as a floating point number
because it has an Sl prefix.
4.2 Measurement data package variables

Variables that are part of a measurement data package are represented as 28 bit unsigned hexadecimal
values with an offset of 0x8000000 (2/27). A floating point variable has one of the Sl prefixes shown in
“Table 1: Sl prefix conversion table”, an integer variable ends with an ‘i' instead.

This format looks as follows:

HHHHHHHp
Where:
HHHHHHH = Hexadecimal value.
p = Prefix character.

For example, a value of 0.01 would be represented as “600000AmM” and a value of -0.01 would be
represented as “7FFFFFEmM”. PalmSens provides source code examples that showcase how to parse
measurement data.

To convert a MethodSCRIPT variable to a floating point value, the following pseudocode can be used:
(HexToUint32 (HHHHHHH) - 2727) * SIFactorFromPrefix (p)

Page |9 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

To convert a floating point value to a MethodSCRIPT variable, the following pseudocode can be used:
Uint32ToHex (value) / SIFactorFromPrefix (p) + 2727

Most programming languages have a built in way of converting a HEX string to an integer. The function
SIFactorFromPrefix can be implemented by the user using, for example, a hash table lookup or a switch
case to translate the prefix character to its corresponding factor.

5 Interpreting measurement data packages

5.1 Package format

Measurement packages consist of a header, followed by any amount of “variable” packages (each with
their own “variable type”), followed by a terminating ‘\n’ character. “Table 2: Measurement data package
format” shows this format. Section “Variable sub package format” explains the format of the variable
fields.

Header | Vari1 | Varseparator | Var2 | Varseparator | VarX | Term
P Variable ; Variable ; Variable | \n

Table 2: Measurement data package format

Page |10 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

5.2 Variable sub package format

The format for a variable sub package is:

Var 1 Var 1 metadata 1 | Var 1 metadata X
ttHHHHHHHP MV..V MV.V

Table 3: Variable sub package format

Where:

tt = Variable Type, represented as a base26 identifier that ranges from “aa” to “zz”.
Variable Types are always lower case. See section “Variable Types” for more
information.

HHHHHHHP = MethodSCRIPT package variable. See section “Measurement data package variables”
for more information.

, = Metadata separator.

M = Metadata type ID, see “Table 4: Metadata types”.

V.V = Metadata value as a hexadecimal value, length is determined by metadata type.

Metadata fields contain extra information about the variable. Each variable can have multiple metadata
fields. See “Table 4: Metadata types” for the possible metadata types.

ID | Name Length | Content

1 | Status 1 0=0K

1 = timing not met (custom commands in the measurement loop took too
long for the specified interval of the measurement)

2 = overload (>95% of max value)

4 = underload (<2% of max value)

8 = overload warning (>80% of max value)

If any status other than OK is detected, the measured data can be

unreliable.
2 | Current 2 Index of current range (device specific, see “Current ranges”). This current
range range is just intended for diagnostic purposes, and is not used in any
calculations during parsing.
4 | Noise 1 Noise level, intended for diagnostic purposes.

Table 4: Metadata types

Page | 11 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

5.3 Package parsing example

An EmStat Pico sends the following measurement data package:
Pda8000800u;ba8000800u,10,20B\n

This package contains two variables: “da8000800u” and “ba8000800u,10,20B”.

The variable sub package “da8000800u” can be broken down as follows:
e The Variable Type is “da”, this is variable type “VT_CELL_SET_POTENTIAL”.
e The value is “08000800 — 0x8000000” = 0x800 = 2048. The prefix is “u” which stands for
“micro”. This makes the final value 2048 uV (or 2.048 mV).
e This variable has no metadata.

The variable sub package “ba8000800u,10,20B” can be broken down as follows:

e The Variable Type is “ba”, this corresponds to Variable Type "VT_CURRENT”.

e The value is “08000800 — 0x8000000” = 0x800 = 2048. The prefix is “u” which stands for
“micro”. This makes the final value 2048 UuA (or 2.048 mA).

e This variable has two metadata packages, the first has an ID of “1” and a value of 0, indicating it
is a status package with the value “OK”. The second metadata package has an ID of “2” and a
value of OB. This indicates that it is a current range with the current range “Ox0B” or “11”. For
example, on the EmStat Pico, this refers to the “5 mA” current range. This current range is just
for diagnostic purposes, and is not used in any calculations during parsing.

6 Measurement loop commands

All measurement techniques are implemented as “measurement loop commands”. This means that the
command will execute one iteration of the measurement technique. After this, all MethodSCRIPT
commands within the measurement loop are executed. When all commands have been executed, the
device waits for the correct timing to start the next iteration of the measurement technique and the
process begins again for the next iteration.

It is not possible to use a measurement loop inside of another measurement loop. Measurement loops
can be used freely inside of a normal loop.

It is possible that the script steps in the loop take more time than is available between each iteration. If
this happens, the next measurement iteration is delayed. It is the responsibility of the user to ensure there
is enough time between measurement iterations to execute the user commands in the loop. The
package metadata can show if timing was met or not.

6.1 Measurement loop example

The following example shows a typical Chrono Amperometry measurement loop :

#Run a measurement loop for the Chrono Amperometry technique
meas loop ca p ¢ 100m 100m 2
#These user commands are executed after one measurement
#iteration has been done
pck start
pck add p
pck add c
pck_end
#At “endloop”, the script execution halts until it is time for the
#next measurement loop iteration
endloop

Page | 12 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

6.2 Measurement loop output

At the start of each measurement loop, the following line is sent from the device:
MXXXX

Where:

M = The header for a measurement loop start package.

XXXX = The technique ID of the measurement loop, see “Table 5: Measurement technique ID's and
device support”

ID Name EmStat | EmStat4
Pico
0000 | Linear Sweep Voltammetry Yes Yes
0001 | Differential Pulse Voltammetry Yes Yes
0002 | Square Wave Voltammetry Yes Yes
0003 | Normal Pulse Voltammetry Yes Yes
0005 | Cyclic Voltammetry Yes Yes
0007 | Chrono Amperometry Yes Yes
0008 | Pulsed Amperometric Detection Yes Yes
O00A | Chrono Potentiometry No Yes
000B | Open-Circuit Chrono Potentiometry Yes Yes
000D | Electrochemical Impedance Spectroscopy Yes Yes
00OE | Galvanostatic Electrochemical Impedance Spectroscopy No Yes
OO0OF | Linear Sweep Potentiometery No Yes

Table 5: Measurement technigue 1D's and device support

When a measurement loop is completed the following line is sent:

*

The following example shows the output of a EIS measurement loop command:

MOOOD
... data packages ...

*

Page |13 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

7 Variable Types

Variable Types offer context to MethodSCRIPT variables. They communicate the unit and the origin of
the variable. They are also used as an argument to some functions to measure a specific type of variable.
For example, when the “meas” command is used, the type of variable to measure must be passed as an
argument. Table 6: Variable Types shows the available variable types.

user)

Measurable types ID Description

VT_UNKNOWN aa Unknown (not initialized)

VT_POTENTIAL ab Measured WE voltage vs RE
VT_POTENTIAL_CE ac Measured CE voltage vs GND
VT_POTENTIAL_RE ae Measured RE voltage vs GND
VT_POTENTIAL_WE_VS_CE ag Measured WE voltage vs CE
VT_POTENTIAL_AINO as Measured Analog Input O voltage
VT_POTENTIAL_AIN1 at Measured Analog Input 1 voltage
VT_POTENTIAL_AIN2 au Measured Analog Input 2 voltage
VT_CURRENT ba Measured WE current

VT_PHASE ca Measured phase

VT_IMP cb Measured impedance

VT_ZREAL cc Measured real part of complex impedance
VT_ZIMAG cd Measured imaginary part of complex impedance
VT_EIS_TDD_E ce Measured RE potential Time Domain Data
VT_EIS_TDD_| cf Measured WE current Time Domain Data
VT_EIS_FS cg Sampling frequency used for EIS measurement
VT_EIS_E_AC ch Measured E-signal AC value

VT_EIS_E_DC Ci Measured E-signal DC value

VT_EIS_I_AC Cj Measured [-signal AC value

VT_EIS_|_DC ck Measured I-signal DC value

Appliable types ID Description

VT_CELL_SET_POTENTIAL da Set control value for cell potential
VT_CELL_SET_CURRENT db Set control value for cell current
VT_CELL_SET_FREQUENCY dc Set value for frequency
VT_CELL_SET_AMPLITUDE dd Set value for ac amplitude

Other ID Description

VT_TIME eb Time in seconds, referenced to the time since startup
VT_PIN_MSK ec Binary pin bitmask, indicating which pins are high / low
VT_TEMPERATURE ed Measured temperature in degrees Celsius
Generic types (reserved for ID Description

Page | 14

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

VT_CURRENT_GENERIC1 ha
VT_CURRENT_GENERIC2 hb
VT_CURRENT_GENERIC3 hc
VT_CURRENT_GENERIC4 hd
VT_POTENTIAL_GENERIC1 ia

VT_POTENTIAL_GENERIC2 ib
VT_POTENTIAL_GENERIC3 ic
VT_POTENTIAL_GENERIC4 id

VT_MISC_GENERIC1 ja
VT_MISC_GENERIC2 ib
VT_MISC_GENERIC3 ic
VT_MISC_GENERIC4 id
Table 6: Variable Types
Page | 15

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

8 Script argument types

8.1 var

The argument “var” is a reference to a MethodSCRIPT variable. Variables can be changed during
runtime.

8.2 literal

A literal is a constant value argument, it cannot change during runtime.

8.3 var_type

See section “Variable Types”

8.4 integer (int8, int16, int32, uint8, uint16, uint32)

These are integer constants, these cannot be changed and do not accept Si prefixes. Accepted sizes for
these variables are as follows:

Variable | Min Max

Int8 -128 127

Int16 -32.768 32.767

INt32 -2.147.483.648 2.147.483.647
Uint8 0 255

Uint16 0 65.535

Uint32 0 4.294.967.295

8.5 comparator

Comparator operator for Boolean logic, these include:
The equals operator “=="
The not equals operator “I="
The greater than operator “>”
The greater than or equal to operator “>="
The smaller than operator “<”
The smaller than or equal to operator “<="
The bitwise AND operator “&”
(true if at least one bit of both sides matches and is ‘1°)
e The bitwise OR operator “|”
(true if there is at least one bit of the left or right is set to ‘17)
e The bitwise Exclusive OR operator “/”
(true if at least one bit of the right and left operator differ in value)

8.6 string

A string constant argument, a string is always encapsulated in double quotes (*).

8.7 Optional arguments

Some commands can have optional arguments to extend their functionality. For example most
techniques support the use of a second working electrode (bipot or poly_we). See chapter “Optional
arguments” for detailed information.

Page | 16 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

9 Optional arguments

Optional arguments are added after the last mandatory argument. The format is "cmd_name(arg1 arg2
arg3 ..)"

9.1 poly_we

Measure a current on a secondary WE. This secondary WE uses the CE and RE of the main WE, but can
be offset in potential from the main WE or RE. WE’s that are used as poly WE must be configured as
such using the command “set_pgstat_mode 5” for the channel the WE belongs to.

Arguments
Name Type
Channel uint8 Channel of the additional working electrode
Output current var[out] Qutput variable to store the measured current in.
Example

e
#declare variable for output potential
var p
#declare variable for output current of main WE
var c
#declare variable for output current of secondary WE
var b
#enable bipot on ch 1
set pgstat chan 1
#set the selected channel to bipot mode
set pgstat mode 5
#set bp mode to offset or constant
set poly we mode 1
#set offset or constant voltage
set e 100m
#set the current-range of the secondary WE
set range ba lu
#switch back to do actual measurement on ch 0
set pgstat chan 0
#set the main WE channel to low speed mode
set pgstat mode 2
set range ba lu
set range minmax da Om Om
set max bandwidth 500
set e -500m
cell on
wait 1
#LSV measurement using channel 0 as WE1l and channel 1 as WE2
#WE2 current is stored in var b
meas_loop lsv p ¢ -500m 500m 5m 100m poly we (1l b)
pck start
pck _add p
pck _add c
pck _add b
pck _end
endloop
cell off

Perform an LSV measurement and send a data packet for every iteration. The data packet contains the
set potential (p), the measured current of the main WE (c) and the measured current of the secondary

Page | 17 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

WE (b). The LSV performs a potential scan from -500 mV to 500 mV with steps of 10 mV at a rate of 100
mV/s. This results in a total of 101 data points at a rate of 10 points per second.

9.2 nscans

Perform multiple potential sweeps (scans) during a Cyclic Voltammetry measurement, instead of
sweeping only once. When nscans is used the cycle number will be printed at the start of every sweep.
The number is formatted as “Cxxxx” where “xxxx” is a number starting from 0000. A special character (-
") is printed at the end of every cycle. For the rest the output is the same as when nscans omitted. See
output example below.

Arguments
Name Type

Number of scans uint16 The number of scans to perform.

Example

meas loop cv p ¢ 0 -500m 500m 10m 1 nscans (5)
pck start
pck add p
pck add c
pck _end
endloop

This CV performs a potential scan from 0 V to -500 mV to 500 mV and back to OV with steps of 10 mV
at a rate of 1 V/s. Because of the “nscans(b)” parameter, this pattern is repeated 5 times.

Output example with nscans(2):

MOO005

C0000
PdarF8604Fu;bad75D0A8p,10,207
Pda7F9EBABU;ba51FC060p,10,207
Pda7FB6CFCu;ba5C994C0p, 10,207

C0001
Pda7F9EBABU;ba51FC060p,10,207
Pda7FB6CFCu;ba5C994C0p, 10,207
Pda7FCF353u;ba6731714p,10,207

*

9.3 meta_msk

Enable or disable metadata packages sent with the “pck_add” command. This can be used to reduce
the amount of data sent by disabling packages, making it possible to achieve higher data rates.

Arguments
Name Type
Metadata mask uint32 A bitwise mask used to enable/disable types of metadata
packages. Values can be added to enable multiple types of
metadata.
0 = All metadata disabled
1 = Enable datapoint status package
2 = Enable current range package
Page | 18

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

Example

@
var a

meas 100m a ba

pck add a
pck_end

pck add a
pck _end

set pgstat mode 2

pck start meta msk (0x03)

pck start meta msk (0x01)

This example measures a current and then sends two packages containing the measured current. The
first package will include the current range and status metadata. The second package will only include

the status metadata.

9.4 eis_tdd
The “eis_tdd” optional parameter enables the transfer of time-domain-data for an EIS or GEIS
measurement.
Arguments
Name Type
Potential signal tdd | Array[out] The acquired time domain data of the potential signal of one EIS
iteration. Minimum size required is 4096.
Current signal tdd Array[out] The acquired time domain data of the current signal of one EIS
iteration. Minimum size required is 4096.
Number of samples | Uint16[out] | The number of acquired data points (samples) for both signals
Sampling frequency | Var[out] The frequency at which the data points are acquired for both
signals
Averaging mode Uint16]in] Averaging mode. Future option, default = O

Page | 19

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

Example

e
var
var
var
var
var
var
var
var g
array u 4096
array c 4096
set pgstat chan 0
set pgstat mode 3
set max bandwidth 200k
set range minmax da 0 O
set range ba 59m
set autoranging ba 59n 59m
cell on
meas loop eis h r j 50m 200k 1 11 0 eis tdd(u ¢ n s 0)
pck start
pck _add h
pck add r
pck _add j
pck _add s
pck _end
store var i 0i ja
loop 1 < n
array get u i d
array get c i g
pck start
pck add d
pck add g
pck _end
add var 1 11
endloop
endloop
on finished:
cell off

[ONN(o B RS R A

Perform an EIS measurement and send the EIS result data packets followed by the time-domain-data for
every iteration.

9.5 eis_opt
The “eis_opt” optional parameter enables the user to control the acquisition properties for an EIS or GEIS
measurement.
Arguments
Name Type
Minimum var / literal The minimum time for acquisition (for frequencies > (Min.Cycles
acquisition time (float) /frequency). Must be a positive value.
Minimum nr. of var / literal The minimum number of cycles to acquire (for frequencies <
cycles to acquire (int, float) 1/Min.Acq.Time). Must be a positive and non-zero value.
Page | 20

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

Example

e
var
var
var
var
var
var
var
var g
array u 4096
array c 4096
set pgstat chan 0
set pgstat mode 3
set max bandwidth 200k
set range minmax da 0 O
set range ba 59m
set autoranging ba 59n 59m
cell on
meas loop eis h r j 50m 200k 1 11 0 eis opt(10m 1)
pck start
pck _add h
pck add r
pck _add j
pck _add s
pck _end
store var i 0i ja
loop 1 < n
array get u i d
array get c i g
pck start
pck add d
pck add g
pck _end
add var 1 11
endloop
endloop
on finished:
cell off

[ONN(o B RS R A

Perform an EIS measurement with 10ms minimal acquisition time and minimal 1 cycle to acquire.

9.6 eis_acdc

The “eis_acdc” optional parameter returns the AC and DC information for the E and | signal

Arguments
Name Type
E_AC var [out] E signal AC value in volts
(float)
E_DC var [out] E signal DC value in volts
(float)
I_AC var [out] | signal AC value in amperes
(float)
Page | 21

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

I_DC var [out] | signal DC value in amperes
(float)

Example

e
var
var
var
var
var
var
var
var g

array u 4096

array c 4096

set pgstat chan 0

set pgstat mode 3

set max bandwidth 200k

set range minmax da 0 O

set range ba 59m

set autoranging ba 59n 59m

cell on

meas loop eis h r j 50m 200k 1 11 0 eis acdc(u ¢ n s)
pck start

#add frequency, Z-real, Z-imaginary to the data packet
pck _add h

pck add r

pck _add j

#add the E AC,E DC,I AC,I DC values to the data packet
pck add
pck add
pck add
pck add
pck _end
endloop
on finished:
cell off

[ONN(I B TS R o

n B8 Qc

Perform an EIS measurement and send the EIS result data packets followed by the
E_AC,E_DC,I_AC,|_DC values.

Page | 22

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

10 Tags

A script can have optional tags (or labels) to direct the execution flow in case of an event like aborting a
running script.

10.1 on_finished:

The commands after this this tag will be executed when the script is aborted, or normal script execution
reaches the tag. These commands are not executed if a script error has occurred, as no further
commands are executed in this case.

Example

meas loop eis h r j 10m 200k 100 17 O
pck start
pck _add h
pck add r
pck _add j
pck _end
endloop
on finished:
cell off

The cell will be switched off when the EIS loop is finished or the script is aborted during the EIS loop. If a
runtime script error occurs, these commands will not be executed.

Page | 23 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11 Script commands

11.1 var

Declare a variable. All variables must be declared before use. Currently only names that consist of 1
lower case character are allowed.

Arguments

Name Type

Variable name | var Variable reference (a-2).
Example

var a

Declare variable with name “a”.

NOTE: variables and arrays with the same name cannot exist in one script

11.2 store_var

Store a value in a variable. This value can be referenced in following commands.

Arguments
Name Type
Variable name | var[out] Variable reference.
(int, float)
Value literal Literal value to store in the variable.
(int, float)
Variable Type | var_type The type identifier for this value, see section “Variable Types”.
Example
store var i1 200 ja

Store a value of 200 in the variable ‘i’ as a floating point variable. This value is of type:
“VT_MISC_GENERIC1”.

store var i 200i ja

Store a value of 200 in the variable ‘i" as an integer variable. This value is of type:
“VT_MISC_GENERIC1”.

Page | 24 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.3 array

Declare a variable array. All variables must be declared before use. Currently only names that consist of 1
lower case character are allowed.

Arguments

Name Type

Variable name | var Array reference (a-2).

Array size uint32 The amount of variables this array can hold.
Example

array a 10

Declare array with name “a” and size 10.

NOTE: variables and arrays with the same name cannot exist in one script

11.4 array_set

Set a variable at the specified index in the array.

Arguments
Name Type
Array variable | var Array reference.
Array index var / literal The index in the array to store the value to.
(int)
Variable var / literal The variable to store in the array.
(int, float)
Example

array a 61
array set a 5i 20m

Declare array with name “a”. Then store the value “0.02” in the array at index 5.

11.5 array_get

Get a variable from the specified index in the array.

Arguments
Name Type
Array variable | var Array reference.
Array index var / literal The index in the array to get the value from.
(int)
Variable var[out] The output variable to store the data from the array in.
(int, float)
Example
array get a 5i b

Get the value in the array at index 5 and stores it in variable “b”.

Page | 26 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.6 copy_var

Copies value from the source address to the destination address.

Arguments
Name Type
Source variable var Variable reference to copy from.
(int, float)
Destination variable | var[out] Variable reference to copy to.
(int, float)
Example
copy var i j

Copies the variable ‘i* to ‘j".

11.7 add_var

Add “Ihs” to “rhs” and store the result in “Ihs”. Metadata of Ihs is maintained. Accepts either integer or
floating point variables, but both arguments must match.

Arguments
Name Type
Lhs var{in/out] The |hs variable, the result is stored here.
(int, float)
Rhs var / literal Literal or variable to add to |hs var.
(int, float)
Example
add var 1 1

Adds 1 to variable ‘i’ and stores it to ‘i’.

11.8 sub _var

Subtract “rhs” from “lhs” and store the result in “Ihs”. Metadata of lhs is maintained. Accepts either
integer or floating point variables, but both arguments must match.

Arguments
Name Type
Lhs varfin/out] The |hs variable, the result is stored here.
(int, float)
Rhs var / literal Literal or variable to subtract from Ihs var.
(int, float)
Example
sub var i 1

Subtracts 1 from the variable ‘i’ and stores it to ‘i’

Page | 26 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.9 mul_var

Multiply “Ihs” with “rhs” and store the result in “Ins”. Metadata of |hs is maintained. Accepts either integer
or floating point variables, but both arguments must match.

Arguments
Name Type
Lhs varfin/out] The |hs variable, the result is stored here.
(int, float)
Rhs var / literal Literal or variable to multiply Ihs by.
(int, float)
Example
mul var i 1500m

Multiplies the variable ‘i” with 1.5 and stores it to i’

11.10 div_var

Divide “Ihs” by “rhs” and store the result in “Ihs”. Metadata of Ihs is maintained. Accepts either integer or
floating point variables, but both arguments must match.

Arguments
Name Type
Lhs var{in/out] The |hs variable, the result is stored here.
(int, float)
Rhs var / literal Literal or variable to divide Ihs by.
(int, float)
Example

div_var i 1500m

Divides the variable ‘i’ by 1.5 and stores it to ‘¥’

11.11 bit_and_var

Performs bitwise AND operation on “lhs” and “rhs”, stores the result in “lhs”.

Arguments
Name Type
Lhs varfin/out] The |hs variable, the result is stored here.
(int)
Rhs var / literal Literal or variable to AND Ihs with
(int)
Example
bit and var i 0x5555

Performs AND on ‘i’ and 0x5555 and stores it to ‘i’.

Page | 27

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.12 bit_or_var

Performs bitwise OR operation on “lhs” and “rhs”, stores the result in “Ihs”.

Arguments
Name Type
Lhs varfin/out] The |hs variable, the result is stored here.
(int)
Rhs var / literal Literal or variable to OR |hs with
(int)
Example
bit or var i 0x5555

Performs OR on ‘i’ and 0x5555 and stores it to ‘i'.

11.13 bit_xor_var

Performs bitwise XOR operation on “Ins” and “rhs”, stores the result in “Ihs”.

Arguments
Name Type
Lhs varfin/out] The Ihs variable, the result is stored here.
(int)
Rhs var / literal Literal or variable to XOR |hs with
(int)
Example

bit xor var i 0x5555

Performs XOR on ‘i’ and 0x5555 and stores it to ‘i’.

11.14 bit_Isl_var

Performs bitwise left shift operation on “lhs”, shifts “rhs” bit positions and stores the result in “Ihs”.

Arguments
Name Type
Lhs varfin/out] The |hs variable, the result is stored here.
(int)
Rhs var / literal Literal or variable to OR |hs with
(int)
Example
bit 1sl var i 4

Performs bitwise shift 4 places to the left on ‘i’ and stores it to i’.

Page | 28

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.15 bit_Isr_var

Performs bitwise right shift operation on “Ihs”, shifts “rhs” bit positions and stores the result in “Ihs”.

Arguments
Name Type
Lhs varfin/out] The |hs variable, the result is stored here.
(int)
Rhs var / literal Literal or variable to OR |hs with
(int)
Example
bit 1lsr var i 7

Performs bitwise shift 4 places to the right on ‘i’ and stores it to ‘i’.

11.16 bit_inv_var

Performs bitwise inverse operation on variable. Note that the “sign” bit is also inverted.

Arguments
Name Type
Variable var{in/out] The variable to invert, the result is stored here.
(int)
Example
bit inv var i

Performs bitwise inverse on ‘i’

11.17 int_to_float

Change the data type from “int” to “float”. Note that this gives an approximation of the integer value.

Arguments
Name Type

Variable name | var[in/out] (int) Variable reference (a-z).

Example

int to float a

Converts variable “a” to float.

Page | 29 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.18 float_to_int

Change the data type from “float” to “int”. This will round down the value to the nearest integer.

Arguments
Name Type

Variable name | var[in/out] (float) Variable reference (a-z).

Example

float to int a

Change variable “a” to int.

11.19 set_e

Apply a variable or literal as the cell potential. This determines the potential (WE vs RE). The potential is
limited by the potential range of the currently active “pgstat mode” see section “PGStat mode
properties”.

Arguments
Name Type
Potential var / literal The cell potential to apply in Volts.
(float)
Example
set e 100m

Sets control value for the potentiostat loop to 0.1V,

11.20 set i

Apply a variable or literal as the WE current in galvanostatic mode. Applied currents are limited by the
selected CR. It is advised to use the “set_cr” command before calling “set_i".

Arguments
Name Type
Current var / literal The WE current to apply in amperes.
(float)
Example
set range ba 100m
set i 100m

Sets control current value for the galvanostat loop to 0.1A.

Page | 30 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.21 wait

Wait for the specified amount of time.

Arguments
Name Type
Time var / literal The amount of time to wait in seconds.
(float)
Example
wait 100m

Wait 100 milliseconds.

11.22 set_int

Configure the interval for the “await_int” command. This also (re)stats the counter for the interval timer.

Arguments
Name Type
Interval var / literal The interval time in seconds.
(float)
Example

set _int 100m

Set interval to 100 milliseconds.

11.23 await_int

Wait for the next interval. This command allows the use of an asynchronous background timer to
synchronize the script to a certain interval.

Arguments
No arguments

Example

var t
store var t 0 aa
set int 100m
#loop until t wait time is higher than 50 ms
loop t <= 50m
#wait for next interval of 100ms
await int
#add 10 ms to wait time
add var t 10m
#wait variable amount of time
wait t
endloop

Set interval to 100 ms. Then execute a loop every 100 ms using await_int to synchronize the start of
each loop. Even though the loop takes a variable amount of time because of the variable “wait”
command, the loop will execute once every 100 ms.

Page | 31 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.24 loop

Repeat all commands up to the next “endloop” until the specified condition is matched. All loops must
be terminated with an “endloop”. Accepts either integer or floating point variables, but if argument types
don’t match, they are compared as floats.

Arguments
Name Type
Stop condition | var/ literal Literal or variable to be compared with the rhs variable.
lhs (int, float)
Stop condition | comparator | Comparator indicating the type of comparison to make.
comparator (see paragraph 8.5 comparator)
Stop condition | var/ literal Literal or variable to be compared with the Ihs variable.
rhs (int, float)

Example
var i

store var i 0i aa
loop 1 < 101

add var i 11
endloop

Add 1 to i until variable “i” reaches 10. This example uses integer variables.

11.25 endloop

Signals the end of a loop, see “loop” command.

Arguments
No arguments.

11.26 breakloop

Breaks out of the current loop. The script will continue execution from the next “endloop”.

Arguments
No arguments.

Page | 82 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.27 if, elseif, else, endif

Conditional statements allow the conditional execution of commands. Every “if” statement must be
terminated by an “endif” statement. In between the “if” and “endif” statements can be any number of
“elseif” statements and/or one “else” statement. Accepts either integer or floating point variables, but if
argument types don’t match, they are compared as floats.

Arguments for if, elseif commands

Name Type

Condition lhs var / literal Literal or variable to be compared with the rhs variable.
(int, float)

Condition comparator | Comparator indicating the type of cPomparison to make.

comparator (see paragraph 8.5 comparator)

Condition rhs | var/ literal Literal or variable to be compared with the Ihs variable.
(int, float)

Example
if a > 5

send string "a is bigger than 5"
elseif a >= 3

send string "a is lower than 5 but bigger than or equal to 3"
else

send string "a is lower than 3"
endif

One of the send_string commands will be executed, depending on the value of variable ‘a’.

11.28 meas

Measure a datapoint of the specified type and store the result as a variable. The datapoint will be
averaged for the specified amount of time at the maximum available sampling rate.

For supported value types of each device, refer to section “Supported variable types for meas

command”.
Arguments
Name Type
Time to measure | var/ literal The amount of time to spend averaging measured data.
(float)
Destination var[out] Variable to store the measured data in.
(float)
Var type var_type
The type of variable to measure, see section “Variable Types”.
Example
meas 100m c ba

Measure the signal with the var_type: ba (VT_CURRENT) for 100ms and store the result in the variable

C.

Page | 33 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.29 meas_loop_Isv

Perform a Linear Sweep Voltammetry (LSV) measurement. An LSV measurement scans a potential range
in small steps and measures the current at each step.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output potential var[out] Output variable to store the set potential for this iteration.
(float)
Output current var[out] Output variable to store the measured current in.
(float)
Begin potential var / literal The begin potential for the LSV technique.
(float)
End potential var / literal The end potential for the LSV technique.
(float)
Step potential var / literal The potential increase for each step. Affects the amount of data
(float) points per second, together with the scan rate. This is an
absolute step. The direction of the scan is determined by “Begin
potential” and “End potential”.
Scan rate var / literal The scan rate of the LSV technique. This is the speed at which
(float) the applied potential is ramped in V/s. Can only be positive.
<Optional arg,> Optional See chapter 9 for detailed information
arg.
Optional arguments
poly_we
Example
meas loop 1lsv p ¢ -500m 500m 10m 100m
pck start
pck add p
pck add c
pck _end
endloop

Perform an LSV measurement and send a data packet for every iteration. The data packet contains the
set potential and measured current. The LSV performs a potential sweep from -500 mV to 500 mV with
steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per
second.

Page | 34 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.30 meas_loop_Isp

Perform a Linear Sweep Potentiometry (LSP) measurement. An LSP measurement scans a range of
currents in small steps and measures the potential at each step. Galvanostatic PGStat mode(6) is
required for LSP.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output potential var[out] Output variable to store the measured potential in.
(float)
Output current var[out] Output variable to store the set current for this iteration.
(float)
Begin current var / literal The begin current for the LSP technique.
(float)
End current var / literal The end current for the LSP technique.
(float)
Step current var / literal The current increase for each step. Affects the amount of data
(float) points per second, together with the scan rate. This is an
absolute step. The direction of the scan is determined by “Begin
current” and “End current”.
Scan rate var / literal The scan rate of the LSP technique. This is the speed at which
(float) the applied current is ramped in A/s. Can only be positive.
<Optional arg,> Optional See chapter 9 for detailed information
arg.
Optional arguments
poly_we
Example
meas loop lsp p ¢ -5m 5m 100u Im
pck start
pck add c
pck add p
pck _end
endloop

Perform an LSP measurement and send a data packet for every iteration. The data packet contains the
set current and measured potential. The LSP performs a current sweep from -5 mA to 5 mA with steps
of 100 uA at a rate of 1 mA/s. This results in a total of 101 data points at a rate of 10 points per second.

Page | 36 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.31 meas_loop_cv

Perform a Cyclic Voltammetry (CV) measurement. In a CV measurement, the potential is stepped from
the begin potential to the vertex 1 potential, then the direction is reversed and the potential is stepped to
the vertex 2 potential and finally the direction is reversed again and the potential is stepped back to the
begin potential. The current is measured at each step.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output potential var[out] Output variable to store the set potential for this iteration.
(float)
Output current varfout] Output variable to store the measured current in.
(float)
Begin potential var / literal The begin potential for the CV technique.
(float)
Vertex 1 potential var / literal The vertex 1 potential. First potential where direction reverses.
(float)
Vertex 2 potential var / literal The vertex 2 potential. Second potential where direction
(float) reverses.
Step potential var / literal The potential increase for each step. Affects the amount of data
(float) points per second, together with the scan rate. This is an
absolute step that does not affect the direction of the scan.
Scan rate var / literal The scan rate of the CV technique. This is the speed at which the
(float) applied potential is ramped in V/s. Can only be positive.
<Optional arg,> Optional See chapter 9 for detailed information
arg.
Optional arguments
poly_we
nscans
Example
meas loop cv p ¢ 0 500m -500m 10m 100m
pck start
pck add p
pck _add c
pck _end
endloop

Perform a CV measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. The CV performs a potential scan from 0 mV to 500 mV to -500 mV to O
mV. The steps of 10 mV at a rate of 100 mV/s. This results in a total of 201 data points at a rate of 10
points per second.

Page | 36 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.32 meas_loop_dpv

Perform a Differential Pulse Voltammetry (DPV) measurement. In a DPV measurement, the potential is
stepped from the begin potential to the end potential. At each step, the current (reverse current) is
measured, then a potential pulse is applied and the current (forward current) is measured. The forward
current minus the reverse current is stored in the “Output current” variable.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output potential var[out] Output variable to store the set potential for this iteration.
(float)
Output current var{out] QOutput variable to store “forward current — reverse current” in.
(float)
Begin potential var / literal The begin potential for the potential scan.
(float)
End potential var / literal The end potential for the potential scan.
(float)
Step potential var / literal The potential increase for each step. Affects the amount of data
(float) points per second, together with the scan rate. This is an
absolute step that does not affect the direction of the scan.
Pulse potential var / literal The potential of the pulse. This is added to the currently applied
(float) potential during a step.
Pulse time var / literal The time the pulse should be applied.
(float)
Scan rate var / literal The speed at which the applied potential is ramped in V/s. Can
(float) only be positive. Scan rate must be lower than “Step potential /
Pulse time / 2.
<Optional arg,> Optional See chapter 9 for detailed information
arg.
Optional arguments
poly_we
Example
meas loop dpv p ¢ -500m 500m 10m 20m 5m 100m
pgk start
pck_add o)
pck_add ¢
pck_end
endloog

Perform a DPV measurement and send a data packet for every iteration. The data packet contains the
set potential and “forward current — reverse current”. The DPV performs a potential scan from -500 mV
to 500 mV with steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of
10 points per second. At every step a pulse of 20mV is applied for 5ms

Page | 37 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.33 meas_loop_swv

Perform a Square Wave Voltammetry (SWV) measurement. In a SWV measurement, the potential is
stepped from the begin potential to the end potential. At each step, the current (reverse current) is
measured, then a potential pulse is applied and the current (forward current) is measured. The forward
current minus the reverse current is stored in the “Output current” variable. The pulse length is “1 /
Frequency / 2”.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output var[out] Output variable to store the set potential for this iteration.
potential (float)
Output current | var[out] Output variable to store “forward current — reverse current” in.
(float)
Output var{out] Qutput variable to store forward current in.
forward (float)
current
Output reverse | var[out] QOutput variable to store reverse current in.
current (float)
Begin potential | var/ literal The begin potential for the potential scan.
(float)
End potential var / literal The end potential for the potential scan.
(float)
Step potential | var / literal The potential increase for each step. This is an absolute step that
(float) does not affect the direction of the scan.
Amplitude var / literal The amplitude of the pulse. This value times 2 is added to the
potential (float) currently applied potential during a step.
Frequency var / literal The frequency of the pulses.
(float)
<Optional Optional See chapter 9 for detailed information
arg,> arg.
Optional arguments
poly_we
Example
meas loop swv p ¢ £ r -500m 500m 10m 15m 10
pgk start
pck_add p
pck_add c
pck_end
endloog

Perform a SWV measurement and send a data packet for every iteration. The data packet contains the
set potential and “forward current — reverse current”. The SWV performs a potential scan from -500 mV
to 500 mV with steps of 10 mV at a frequency of 10 Hz. This results in a total of 101 data points at a rate
of 10 points per second. At every step a pulse of 30mV (2*15mV) is applied for 50ms (1/Frequency/2).

Page | 38 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.34 meas_loop_npv

Perform a Normal Pulse Voltammetry (NPV) measurement. In an NPV measurement, the pulse potential
is stepped from the begin potential to the end potential. At each step the pulse potential is applied and
the current is measured at the top of this pulse. The potential is then set back to the begin potential until
the next step. The measured current is stored in the “Output current” variable.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output potential var[out] Output variable to store the set potential for this iteration.
(float)
Output current var{out] Output variable to store the measured current in.
(float)
Begin potential var / literal The begin potential for the potential scan.
(float)
End potential var / literal The end potential for the potential scan.
(float)
Step potential var / literal The pulse potential increase for each step. Affects the amount of
(float) data points per second, together with the scan rate. This is an
absolute step that does not affect the direction of the scan.
Pulse time var / literal The time the pulse should be applied.
(float)
Scan rate var / literal The speed at which the applied potential is ramped in V/s. Can
(float) only be positive. Scan rate must be lower than “Step potential /
Pulse time / 2.
<Optional arg,> Optional See chapter 9 for detailed information
arg.
Optional arguments
poly_we
Example
meas loop npv p ¢ -500m 500m 10m 20m 5m 100m
pck start
pck add p
pck add c
pck_end
endloop

Perform an NPV measurement and send a data packet for every iteration. The data packet contains the

set potential and measured pulse current. The NPV performs a potential scan from -500 mV to 500 mV

with steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points
per second. At every step a potential pulse of “step index * step potential” mV is applied for 5ms.

Page | 39 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.35 meas_loop_ca

Perform a Chrono Amperometry (CA) measurement. In a CA measurement, a DC potential is applied and
the current is measured at the specified interval. The measured current is stored in the “Output current”

variable.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out] Output variable to store the set potential for this iteration.
(float)

Output current var[out] Output variable to store the measured current in.
(float)

DC potential var / literal The DC potential to be applied.
(float)

Interval time var / literal The interval between measured data points.
(float)

Run time var / literal The total run time of the measurement.
(float)

<Optional arg,> Optional See chapter 9 for detailed information
arg.

Optional arguments
poly_we

Example

pck start
pck add p
pck add c
pck_end
endloop

meas loop ca p ¢ 100m 100m 2

Perform a CA measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. A DC potential of 100 mV is applied. The current is measured every 100
ms for a total of 2 seconds. This results in a total of 20 data points at a rate of 10 points per second.

Page | 40

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.36 meas_loop_cp

Perform a Chrono Potentiometry (CP) measurement. In a CP measurement, a DC current is applied and
the potential is measured at the specified interval. The measured potential is stored in the “Output
potential” variable. Galvanostatic PGStat mode(6) is required for CP.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output potential var[out] Output variable to store the measured potential for this iteration.
(float)
Output current var{out] Output variable to store the set current in.
(float)
DC current var / literal The DC current to be applied.
(float)
Interval time var / literal The interval between measured data points.
(float)
Run time var / literal The total run time of the measurement.
(float)
<Optional arg,> Optional See chapter 9 for detailed information
arg.
Optional arguments
poly_we
Example
meas loop cp p ¢ 1lm 100m 2
pck start
pck add c
pck add p
pck_end
endloop

Perform a CP measurement and send a data packet for every iteration. The data packet contains the
measured potential and set current. A DC current of 1 mA is applied. The potential is measured every
100 ms for a total of 2 seconds. This results in a total of 20 data points at a rate of 10 points per second.

Page | 41 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.37 meas_loop_pad

Perform a Pulsed Amperometric Detection (PAD) measurement. In a PAD measurement, potential pulses
are applied to a DC potential. Each iteration starts at the DC potential, the current is measured before the
pulse (idc). Then the pulse potential is applied, and the current is measured at the end of the pulse
(ipulse). The output current returns a current value depending of one the 3 modes: dc (idc), pulse (ipulse)
or differential (ipulse — idc).

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output potential var[out] Output variable to store the set potential for this iteration.
(float)
Output current var[out] Output variable to store “forward current — reverse current” in.
(float)
DC potential var / literal The begin potential for the potential scan.
(float)
Pulse potential var / literal The potential of the pulse. This is the potential that is set during a
(float) pulse. It is not referenced to the DC potential.
Pulse time var / literal The time the pulse should be applied.
(float)
Interval time var / literal The time of the pulse interval
(float)
Run time var / literal Total run time of the measurement
(float)
mode uint8 PAD mode : 1=dc, 2 = pulse , 3 = differential
<Optional arg,> Optional See chapter 9 for detailed information
arg.
Optional arguments
poly_we
Example
meas loop pad p ¢ 500m 1500m 10m 50m 10050m 2
pgk start
pck_add p
pck_add €
pck_end
endloog

Perform a PAD measurement and send a data packet for every iteration. The data packet contains the
set potential and measured current. A DC potential of 500 mV is applied. A pulse potential of 1500mV is
applied every 50 ms for 10 ms and the current is measured on the pulse (mode = pulse). The
measurement is 10.05 seconds in total. This results in a total of 201 data points at a rate of 20 points per
second.

Page | 42 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.38 meas_loop_ocp

Perform an Open Circuit Potentiometry (OCP) measurement. In an OCP measurement, the CE is
disconnected so that no potential is applied. The open circuit RE potential is measured at the specified
interval. The measured potential is stored in the “Output potential” variable.

This is a measurement loop function and needs to be terminated with an end1oop command. Refer to
section “Measurement loop” for more information.

Arguments

Name Type

Output potential var[out] Output variable to store the measured RE potential in.
(float)

Interval time var / literal The interval between measured data points.
(float)

Run time var / literal The total run time of the measurement.
(float)

<Optional arg,> Optional arg. See chapter 9 for detailed information

Example

pck start

pck add p

pck _end
endloop

meas_loop ocp p 100m 2

Perform an OCP measurement and send a data packet for every iteration. The data packet contains the
set measured RE potential. The RE potential is measured every 100 ms for a total of 2 seconds. This
results in a total of 20 data points at a rate of 10 points per second.

Page | 43

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.39 meas_loop_eis

Perform a potentiostatic EIS frequency scan and store the resulting Z-real and Z-imaginary in the given
variables. High speed potentiostatic PGStat mode is required for EIS. The following commands currently
have no effect on EIS measurements:

¢ set_max_bandwidth: bandwidth is taken from frequency scan ranges.

e set_pot_range: pot range is taken from amplitude and DC potential arguments.

This is a measurement loop function and needs to be terminated with an “endloop” command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output frequency var{out] Output variable to store the applied frequency (Hz) for this
(float) iteration.
Output Z-real var{out] QOutput variable to store the real part of the measured complex
(float) impedance. This field also contains the meta-data of the I-signal
(current)
Output Z-imaginary | var[out] QOutput variable to store the imaginary part of the measured
(float) complex impedance. This field also contains the meta-data of the
E-signal (potential)
Amplitude var / literal Amplitude of the applied sinewave in Vrms
(float)
Start frequency var / literal Start frequency of the scan in Hz
(float)
End frequency var / literal End frequency of the scan in Hz
(float)
Nr of points var / literal Number of frequency points to be scanned.
(int, float)
DC potential var / literal DC potential offset of the applied sinewave in Volt.
(float)
Example
#mode 3= high speed mode
set pgstat mode 3
meas_loop eis £ r i 10m 100k 100 11i 200m
pck start
pck add £
pck add r
pck_add i
pck:end
endloop

Perform an EIS measurement at frequency ‘f’ with 10mV amplitude and 200mV DC offset. The measured
complex impedance is returned in 2 variables with Z-real in ‘r’ and Z-imaginary in ‘i’. 11 points will be
measured at frequencies between 100 kHz and 100 Hz, divided on a logarithmic scale.

Page | 44 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.40 meas_loop_geis

Perform a galvanostatic EIS frequency scan and store the resulting Z-real and Z-imaginary in the given
variables. Galvanostatic PGStat mode(6) is required for GEIS. The following commands currently have no
effect on GEIS measurements:

¢ set_max_bandwidth: bandwidth is taken from frequency scan ranges.

e set_pot_range: pot range is taken from amplitude and DC potential arguments.

This is a measurement loop function and needs to be terminated with an endl1oop command. Refer to
section “Measurement loop” for more information.

Arguments
Name Type
Output frequency var[out] Output variable to store the applied frequency (Hz) for this
(float) iteration.
Output Z-real var{out] Output variable to store the real part of the measured complex
(float) impedance. This field also contains the meta-data of the I-signal
(current)
Output Z-imaginary | var[out] QOutput variable to store the imaginary part of the measured
(float) complex impedance. This field also contains the meta-data of the
E-signal (potential)
Amplitude var / literal Amplitude of the applied sinewave in Arms
(float) Note: Exceeding the max. amplitude will throw an error, see
15.2 for the max. amplitude .
Start frequency var / literal Start frequency of the scan in Hz
(float)
End frequency var / literal End frequency of the scan in Hz
(float)
Nr of points var / literal Number of frequency points to be scanned.
(int, float)
DC current var / literal DC current offset of the applied sinewave in ampere
(float)
Example

#mode 6= galvanostatic
set pgstat mode 6
meas loop geis £ r i 10m 100k 100 11i 25m
pck start
pck add f
pck add r
pck add i
pck _end
endloop

Perform an GEIS measurement at frequency ‘f’ with 10mArms amplitude and 25mA DC offset. The
measured complex impedance is returned in 2 variables with Z-real in ‘r’ and Z-imaginary in ‘i’. 11 points
will be measured at frequencies between 100 kHz and 100 Hz, divided on a logarithmic scale.

Page | 45 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.41 set_autoranging

Enable or disable autoranging for all meas_loop_* functions. Autoranging selects the most appropriate
range for the measured value in the last measurement loop iteration. The selected range is limited by the
min and max arguments. If min and max are the same value, autoranging is disabled.

Note: The set_autoranging command also accepts calls without the var_type parameter, but this format
is deprecated and may be removed in later versions.

Arguments
Name Type
Var type var_type | The type of variable to measure, see section “Variable Types”.
When omitted VT_CURRENT (ba) is used as default

Min literal The min value in this measurement.
(float)

Max literal The max value in this measurement.
(float)

Example 1

set autoranging ba lu Im

Enable autoranging for currents between 1 uA and 1 mA.

Example 2
set autoranging ab 10m 1000m

Enable autoranging for potentials between 10mV and 1V

Page | 46 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.42 pck_start

Signal the start of a measurement data packet.

Arguments
Name Type

<Optional arg.> Optional | See chapter 9 for detailed information
arg.

Optional arguments
meta_msk

Example

pck start

Signal the start of a new measurement package.

11.43 pck_add

Add a stored variable to be sent in this data packet.

Arguments
Name Type
Variable var The variable to add to the data packet.
(int, float)
Example
pck add i

Add variable ‘i’ to the data packet.

11.44 pck_end

Signal the end of a measurement data package.

Arguments
No arguments.

Optional arguments
meta_msk

Example

pck _end

Signal the end of a measurement data package.

Page | 47 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.45 set_max_bandwidth

Set maximum bandwidth of the signal being measured. Any signal of significant higher frequency than
the set bandwidth will be filtered out. There is no defined lower bound to the bandwidth. At max
bandwidth the signal is attenuated by up to 1% of the potential or current step.

Arguments
Name Type
Max bandwidth var / literal | The maximum expected bandwidth expected. Anything below this
(float) frequency will not be filtered out.
Example
set max bandwidth 1k

Set the max bandwidth to a frequency of 1 kHz.

11.46 set_cr (deprecated)

The set_cr command has been deprecated and may be removed in future releases, please use the
“set_range” command instead.

Set the current range for the given maximum current. The device will select the lowest current range that
can measure this current without overloading.

This is replaced by the “set_range” command.

Arguments
Name Type
Max current var / literal | The maximum expected current.
(float)
Example

set cr 500n

Set current range to be able to measure a current of 500nA

Note: This command is ignored when autoranging is enabled for meas_loop_eis.

Page | 48 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.47 set_range

Set the expected maximum absolute current or potential for a given “Variable Type”. The device will
automatically configure itself, taking this maximum value into account. Unsupported variable types are
ignored without throwing an error.

The following variable types are currently supported:

e Measured current “ba”, selects the lowest current range that can measure the “Max value”
current without causing an overload. This command is ignored in galvanostatic mode.

o Measured potential “ab”, selects the lowest potential range that can measure the “Max value”
current without causing an overload. Devices that do not support potential ranging will ignore
this command.

o Applied current “db”, selects the lowest current range that can apply the “Max value” current
without causing an overload. This command is ignored in non-galvanostatic modes.

e Applied potential “da”, optimises the circuitry to be able to apply the “Max value” potential. This
command is ignored in galvanostatic mode.

The following table shows which variable types are supported on which devices:

Variable | EmStat Pico Emstat4
type
ba X X
ab X
db X
da X
Arguments
Name Type
Variable Type var_type The type identifier for this value, see section “Variable Types”.
Max value var / literal | The absolute maximum or minimum expected current or potential.
(float)
Example

set range ba 500n

Set current range (ba) to be able to measure a current of 500nA.

Note: This command is ignored when autoranging is enabled for meas_loop_eis.

Page | 49 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.48 set_range_minmax

Set the expected minimum and maximum current or potential for a given “Variable Type”. The device will
automatically configure itself, taking these values into account. Unsupported variable types are ignored
without throwing an error.

The following variable types are currently supported:

e Measured current “ba”, selects the lowest current range that can measure the “Max value”
current without causing an overload. This command is ignored in galvanostatic mode.

e Measured potential “ab”, selects the lowest potential range that can measure the “Max value”
current without causing an overload. Devices that do not support potential ranging will ignore
this command.

e Applied current “db”, selects the lowest current range that can apply the “Max value” current
without causing an overload. This command is ignored in non-galvanostatic modes.

e Applied potential “da”, optimises the circuitry to be able to apply the “Max value” potential. This
command is ignored in galvanostatic mode. The EmStat Pico requires this command to reach its
full applied potential.

The following table shows which variable types are supported on which devices:

Variable | EmStat Pico Emstat4
type
ba X X
ab X
db X
da X
Arguments
Name Type
Variable Type var_type The type identifier for this value, see section “Variable Types”.
Min value var / literal | The minimum expected current or potential.
(float)
Max value var / literal | The maximum expected current or potential.
(float)
Example
set range minmax ba -500n 500n

Set current range (ba) to be able to measure a current of -500nA to 500nA.

Note: This command is ignored when autoranging is enabled for meas_loop_eis.

Page | 50 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.49 cell_on

Turn the cell on, any settings set when the cell was off will be applied here.

Arguments
No arguments.

Example

cell on

Turn the cell on. The potentiostat will start applying the configured potential.

11.50 cell_off

Turn the cell off.

Arguments
No arguments.

Example

cell off

Turn the cell off. This stops the potentiostat from applying a potential to the cell.

11.51 set_pgstat_mode

Set the pgstat hardware configuration to be used for measurements. Setting the pgstat mode initializes
all channel settings to the default values for that mode. See section “

Page | 51 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

PGStat Modes" for more information.

Arguments
Name Type
PGStat mode uint8 Set pgstat mode:
0 = off
2 = low speed
3 = high speed
4 = max range
5 = poly_we
6 = galvanostatic
Example
set pgstat mode 3

Set hardware configuration to high speed mode.

Page | 52 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.52 send_string

Send an arbitrary string as output of the MethodSCRIPT. This string is prepended by a ‘T’, this is the
“text” package identifier. Avoid sending a “\n’ character or non-ASCII characters.

Arguments

Name Type

String string An arbitrary string. Surrounded by quotes (")
Example

send string "hello world"

Sends string “Thello world\n” as output of the MethodSCRIPT.

11.53 set_gpio_cfg

Set GPIO pins configuration. Pins can be configured as one of multiple supported modes. To use a pin in
a specific mode, it must be configured for that mode. See section “Device GPIO pin configurations ” for
available pin configurations per device.

Arguments
Name Type
Pin mask uint32 Bitmask that represents pins that will be configured with this
command.
Mode uint8 0 = GPIO Input
1 = GPIO Output
2 = Peripheral 1
3 = Peripheral 2
Example

set gpio cfg 0bll 1

Set pins 0 and 1 to GPIO output mode. The “Ob” means that the following value is expressed in a binary
format.

Page | 53 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.54 set_gpio_pullup
Enable or disable GPIO pin pullups.

Arguments
Name Type
Pin mask uint32 Bitmask that represents pins that will be configured with this
command.
Pullup uint8 0 = Pullup disabled
1 = Pullup enabled
Example
set gpio pullup Obll 1

Enables pullup on pins 0 and 1. The “Ob” means that the following value is expressed in a binary format.

11.55 set_gpio

Set GPIO pins. Pins with multiple roles that are not configured as GPIO output pins are ignored.

Arguments
Name Type
Pin mask var / literal | Bitmask that represents the state of the bits. Bit 0 is for GPIOO, bit
(int) 1 for GPIO1, etc. Bits that are high correspond with a high output
signal.
Example
set gpio O0blli

Sets pin 0 and 1 high, the rest of the GPIO output pins is set low. The added ‘" is needed because
“set_gpio” only accepts integer variables.

11.56 get_gpio

Get GPIO pin values. Pins with multiple roles that are not configured as GPIO input pins are ignored.

Arguments
Name Type
Pin mask varfout] Bitmask that represents the state of the bits. Bit O is for GPIOQ, bit
(int) 1 for GPIO1, etc. Bits that are high correspond with a high input
signal.
Example
get gpio g

Read all GPIO pins configured as input and stores the bit mask representation of the high pins in variable
g.

Page | 54 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.57 set_pot_range (deprecated)

Set the expected potential range for this script. Some devices cannot apply their full potential range in
one measurement, but need to be set up to reach these potentials beforehand. This function lets you
communicate to the device what the voltage range is you expect in your measurement. The device will
automatically configure itself to be able to reach these potentials. This function will return an error if the
expected voltage range is greater than the dynamic potential range of the device, or if the expected
voltage range exceeds the maximum potential limits of the device.

This is a device specific command. The following devices require this command to reach their full
potential range:
e EmStat Pico

For these devices the voltage range that can be applied without changing the expected potential range is
defined in section “

Page | 55 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

PGStat Modes” as the “dynamic potential range”.

NOTE: This command is deprecated, use set_range_minmax instead.

Arguments
Name Type
Potential 1 var / literal | Bound 1 of the expected voltage range for this measurement.
(float)
Potential 2 var / literal | Bound 2 of the expected voltage range for this measurement.
(float)
Example

set pot range 0 1200m

Ensure that the next measurement can apply potentials between 0V and 1.2 V.

Page | 56 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.58 set_pgstat_chan

Select a potentiostat channel. If the device has multiple parallel potentiostat channels, they can be
selected with this command. In the future it will be possible to use these two channels parallel to each
other, but this feature is not yet available. Refer to section “Other device specific properties” to see how
many channels each device has.

Arguments

Name Type

Channel index uint8 The pgstat channel index to select.
Example

set pgstat chan 0

Selects pgstat channel O.

11.59 set_poly_we_mode

Selects the mode of the additional working electrode.

Arguments
Name Type
Poly_we_mode uint8 The mode of the additional working electrode:
0 = fixed mode (Additional WE is relative to RE)
1= offset mode (Additional WE is relative to main WE)
Example
set poly we mode 1

The additional working electrode mode is set to offset mode.

11.60 get_time

Retrieves time since device startup in seconds. Resolution is dependent on the returned time value (see
table below for estimated resolution).

Arguments
Name Type
Time var[out] The output variable to store the time in.
(float)
Example
get time t

Stores current time in variable ‘t’.

System time Resolution
<1 hour <1ms
1to 24 hours <10ms
110 10 days <100ms
10 to 100 days <1s
=100 days >1s

Page | 57

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.61 file_open

Opens file on persistent storage. This file can be used to store script output to. To store script output to
this file, use the “set_script_output” command.

Arguments
Name Type
Path string The path to the file to open. May include folders.
Open mode uint8 0 = Create new file, if a file with the same name exists, it is
overwritten.
1 = Create new file, if a file with the same name exists, new data is
appended to it.
2 = Create new filg, if a file with the same name exists, the file is not
opened and an error is returned.
Example
file open "measurement.txt" 0

Creates a new file, overwriting any existing file with the same name.

11.62 file_close

Closes currently opened file on persistent storage. If no file is opened, the command is skipped.

Arguments
No arguments

Example

file close

Closes the currently opened file.

11.63 set_script_output

Sets the output mode for the script. This affects where the measurement packages and other script
output are sent to.

Arguments
Name Type
Output mode uint8 0 = Disable the output of the script completely.
1 = Output to the normal output channel (Default)
2 = Qutput to file storage
3 = QOutput to both normal channel and file storage
Example
set script output 5

Script output is directed to file storage and normal output.

Page | 58 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.64 hibernate

Puts the device in hibernate mode (deep sleep).

Arguments
Name Type
Wakeup source uint8 Bitmask for wakeup sources
mask 0x01 = UART
0x02 = Wakeup pin
0x04 = Wakeup timer
Wakeup time var / literal | Time in seconds after which the system is woken up by the system
(float) timer.
The minimum time is device specific, see chapter 15.
Example
hibernate 0x071i 60

Hibernate until the system is woken by the wake-up pin, UART or after 60 seconds.

NOTE:
All channels settings are cleared, and channels are switched off in hibernate mode

11.65 i2c_config

Setup 12C configuration. This is required before using any other 12C command from MethodSCRIPT. The
12C interface supported by MethodSCRIPT always works as master. Multi master mode is currently not
supported.

Arguments
Name Type
Clock speed var / literal | 12C clock speed. 100k (standard mode) and 400k (fast mode) are
(int) officially supported.
Address mode literal (int) 12C addressing mode (7 or 10 bit)
Example
i2c¢ _config 100k 7

Configure 12C for standard mode with 7 bit address.

NOTE:
Make sure the 12C GPIO pins are configured for I12C. See 11.53 set_gpio_cfg for more information on
configuring GPIO.

Page | 59 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.66 i2c_write_byte

Transmits one byte over 12C. Also generates 12C start and stop conditions. If a NAck (Not Acknowledge)
was received from the slave device the user should handle this and reset the Ack status variable.

Arguments
Name Type
Device address var / literal | Address of the slave device.
(int)
Transmit data var / literal | Data byte to transmit.
(int)
Ack status var[in/out] Result of the 12C operation.
0 = Ack received
1 = NAck received for address
2 = NAck received for data
3 = NAck received for address or data
NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_|2C_UNHANDLED_NACK”.
Example
var a
store var a 0 ja
i2c_write byte 0x48i 0x03i a

Write the value 3 to the device with address 0x48.

Page | 60

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.67 i2c_read_byte

Receive one byte over 12C. Also generates 12C start and stop condition. If a NAck (Not Acknowledge)
was received from the slave device the user should handle this and reset the Ack status variable.

Arguments

Name Type

Device address var / literal | Address of the slave device.
(int)

Receive data var (int) Variable to store received byte in.
Ack status var[in/out] Result of the 12C operation.
(int) 0 = Ack received

1 = NAck received for address
2 = NAck received for data
3 = NAck received for address or data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

var a

var d

store var a 0 ja
i2c_read byte 0x48i d a

Receive one byte of data from device 0x48 and store it in variable “d”.

Page | 61 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.68 i2c_write

Write the contents of an array over 12C. Also generates 12C start and stop conditions. If a NAck (Not
Acknowledge) was received from the slave device the user should handle this and reset the Ack status
variable.

Arguments

Name Type

Device address var / literal | Address of the slave device.
(int)

Transmit data array (int) Reference to array that contains the data to transmit.
Transmit count var / literal | Number of bytes to transmit.

(int) Minimum value = 1, maximum value is 255 or size of the array.
Ack status var[in/out] Result of the 12C operation.

(int) 0 = Ack received

1 = NAck received for address
2 = NAck received for data
3 = NAck received for address or data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

var a
array w 2

array set w 01 121
array set w 11 34i
store var a 0 ja

i2c write 0x481 w 2 a

Transmit the values 12 (0xOC) and 34 (0x22) to the device with address 0x48.

Page | 62 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.69 i2c_read

Read a specified number of bytes from 12C. Also generates 12C start and stop conditions. If a NAck (Not
Acknowledge) was received from the slave device the user should handle this and reset the Ack status

variable.
Arguments
Name Type
Device address var / literal | Address of the slave device.
(int)
Received data array (int) Reference to array to store received data in.
Receive count var / literal | Number of bytes to receive.
(int) Minimum value = 1, maximum value is 255 or size of the array.
Ack status var[in/out] Result of the 12C operation.
(int) 0 = Ack received

1 = NAck received for address
2 = NAck received for data
3 = NAck received for address or data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

var a
array r 4

store var a 0 ja

i2c read 0x48i r 4 a

Receive 4 bytes from device 0x48 and store them in array “r”.

Page |63 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.70 i2c_write_read

Transmit the contents of an array over 12C directly followed by reading multiple bytes to a second array.
Also generates 12C start and stop conditions. If a NAck (Not Acknowledge) was received from the slave
device the user should handle this and reset the Ack status variable. In contrast with i2c_read and
i2c_write this command does not generate a STOP-condition between writing and reading.

Arguments

Name Type

Device address var / literal | Address of the slave device.
(int)

Transmit data array (int) Reference to array that contains the data to transmit.
Transmit count var / literal | Number of bytes to transmit.

(int) Minimum value = 1, maximum value is 255 or size of the array.
Received data array (int) Reference to array to store received data in.
Receive count var / literal | Number of bytes to receive.

(int) Minimum value = 1, maximum value is 255 or size of the array.
Ack status var[in/out] Result of the 12C operation.

(int) 0 = Ack received

1 = NAck received for address
2 = NAck received for data
3 = NAck received for address or data

NOTE: the variable passed for this argument should be initialized to
0. Otherwise it will assume that the previous operation caused a
NAck that was not handled by the script and will throw the error:
“STATUS_SCRIPT_I2C_UNHANDLED_NACK”.

Example

var a

array w 2

array r 4

array set w 01 121

array set w 11 34i

store var a 0 ja

i2c write read 0x481 w 2 r 4 a

Write 2 bytes to device 0x48 followed by reading 4 bytes.

Page | 64 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.71 abort

Aborts current code. If the “on_finished:” tag is used it will continue from there. Otherwise the script is
terminated without error. Measurement loops will only be aborted once the end_loop command is
reached.

Arguments
This method has no arguments.

Example

var a

var d

store var a 0 ja
i2c_read byte 0x48i d a

if a !'= 0
send string "NAck received"
abort

endif

Do something interesting with the data in ‘d’

11.72 timer_start

For precise timing between two moments a timer can be set. This this timer can be (re)started with the
timer_start command after which timer_get will return a time relative to this start moment.

Arguments
This method has no arguments.

Example

var a
timer start
Do something interesting here

Page | 65 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.73 timer_get

Read the time relative to the last call to “timer_start”. This method can be called multiple times without
changing the starting moment.

Arguments

Name Type

Relative time varfout] The time relative to the last “timer_start” command
(float)

Example

var a
timer start

Do something interesting that takes a bit of time here
timer get a

pck start

Add a as a timestamp

pck add a

Add other package data

pck _end

NOTE:
Due to floating point number limitations the resolution is dependent on the returned time value. For a

time resolution of <1ms the relative time should not exceed 1 hour.

11.74 set_channel_sync

On multichannel devices that support it, the set_channel_sync' can be used to synchronize
measurements between multiple channels. When synchronization is enabled the slave device will wait
until the master enables synchronisation. After that, the slave and master will synchronize their
measurement loop start and iterations.

Arguments
Name Type
Sync enable uint8 1: Enable syncing
2: Disable syncing
Example

Enable syncing
set channel sync 1

Page | 66 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

11.75 set_acquisition_frac

Set the fraction of the iteration time to use for measurement. This only applies to measurement loops,
and the iteration time is determined by the measurement loop command arguments. The fraction must
be greater than 0 and smaller than 1. Note that a larger fraction means that less time is available for other
commands in the measurement loop to be executed, which could result in errors if the remaining time is
too short. The following figure shows the time that Analog-to-Digital Conversion (ADC) is active for two
different settings of the acquisition fraction.

setpoint setpoint setpoint setpoint
step step step step
acquis:ioovzfgaction ADC ADC ADC ADC
acquis!ionlfl;action ADC ADC ADC ADC
< t_interval T t_interval ’E‘ t_interval T t_interval .;:

The "set_pgstat_mode" command sets the fraction to the default value of 0.25, so to change the
fraction, this command should be used after "set_pgstat_mode".

Arguments
Name Type
Fraction var / literal | Set acquisition fraction
(float)
Example
set _acquisition frac 250m

Set acquisition fraction to 25%.

Page | 67 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

12 PGStat Modes

PGStat modes are device wide configurations that affect which hardware is used during measurements.
This is necessary for devices that have a choice between multiple measurement hardware with different
properties. PGStat modes are device specific, more information can be found in “PGStat mode
properties”.

12.1 PGStat mode off

All hardware is turned off to save power, no measurements can be done.

12.2 PGStat mode low speed

The hardware configuration that has the best properties for low speed measurements is picked. Usually
this means it is less sensitive to high frequency noise and consumes less power. However the maximum
bandwidth is limited.

12.3 PGStat mode high speed

The hardware configuration that has the best properties for high speed measurements is used. In
general, this will consume more power and be more sensitive to noise. However, it will allow higher
frequencies measurements to be done.

12.4 PGStat mode max range

This mode uses a hardware configuration having the highest possible potential range by combining the
high and low speed mode. In general, this will consume more power and be more sensitive to noise. The
bandwidth is limited to the bandwidth of the low speed mode.

12.5 PGStat mode poly_we

This mode combines the two channels forming a poly_we (bipot) device. In this mode one channel is
setup as the main potentiostat and the other as an additional working electrode (bipot).

12.6 PGStat mode galvanostat

The mode used for all galvanostatic measurements. Galvanostatic techniques will not run unless the
galvanostat pgstat mode is selected.

12.7 PGStat mode OCP

This mode can only be used for OCP measurements

Page | 68 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

13 Script examples

Note: The command terminators (\n) are not shown in the examples. These examples can be used on
any device that supports MethodSCRIPT, but they contain some commands that are device specific for
the EmStat Pico. These commands will be ignored on devices that do not use them.

13.1 EIS example

The following example script runs an EIS scan from 200 kHz down to 200 Hz over 11 points. After each
point a data packet will be sent containing the: frequency, Z-real, Z-imaginary variables. The amplitude of
the sine is set to 10m and no DC potential is applied.

e
var h
var r
var Jj
#Select channel 0
set pgstat chan 0
#High speed mode is required for EIS
set pgstat mode 3
#Autorange starting at 1lmA down to 10uA
set autoranging ba 10u 1m
#Cell must be on to do measurements
cell on
#Run actual EIS measurement
meas loop eis h r j 10m 200k 200 11 O
#Send measurement package containing frequency, Z-real and Z-imaginary
pck start
pck _add h
pck add r
pck _add j
pck _end
endloop
#Turn cell off when finished or aborted
on_finished:
cell off

Example output:

e «— ack of ‘e’ cmd

MOOOD « start of measurement loop
Pdc8030D40 ;ccAAE483Fm,14,288;cd7FD3127 ,14,288 « data package

«— more data packages
Pdc8030D3Fm;cc80EDAO4 ,14,287;cd9751491m, 14,287 «— data package

«— end of measurement loop
«— newline indicating end of script

Page | 69 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

13.2 LSV example

The following example script runs an LSV from -0.5 V to 1.5 V with steps of 10 mV in 201 steps. The
scan rate is set to 100 mV/s. After each step, a data packet will be sent containing the set cell potential
and the measured WE current. The measured WE current will be used to autorange.

e
var c
var p
#Select channel 0
set pgstat chan 0
#Low speed mode is fast enough
set pgstat mode 2
#Select bandwidth of 40 for 10 points per second
set max bandwidth 40
#Set up potential window between -0.5 V and 1.5 V, otherwise
#the max potential would be 1.1 V for low speed mode
set range minmax da -500m 1500m
#Set current range to 1 mA
set range ba Im
#Enable autoranging, between current of 100 uA and 5 mA
set autoranging ba 100u 5m
#Turn cell on for measurements
cell on
#fequilibrate at -0.5 V for 5 seconds, using a CA measurement
meas loop ca p ¢ -500m 500m 5
pck start
pck add p
pck _add c
pck _end
endloop
#Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV
#and a scan rate of 100 mV/s
meas loop 1lsv p ¢ -500m 1500m 10m 100m
#Send package containing set potential and measured WE current.
pck start
pck add p
pck _add c
pck_end
endloop
#Turn off cell when done or aborted
on finished:
cell off

Example output:

e «— ack of ‘e’ cmd

MO0007 « start of measurement loop (CA)
Pda7F85E36u;ba7Fr77484p,14,20B « data package

«— more data packages
Pda7F85E36u;ba7Fr77484p,14,20B « data package

* « end of measurement loop (CA)
MO0000 « start of measurement loop (LSV)
Pda816E55Fu;ba816DB89p, 14,207 « data package

«— more data packages
Pda816E55Fu;ba816DB89p, 14,207 « data package

« end of measurement loop (LSV)
«— newline indicating end of script

Page | 70 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

13.3 SWV example

The following example script runs a SWV from -0.5V to 0.5V with steps of 10 mV in 101 steps. After
each step, a data packet will be sent containing the cell potential for that step and current resulting from
the SWV measurement.

e
var
var
var
var
set pgstat chan 0
set pgstat mode 2
#Set maximum required bandwidth based on frequency * 4,
#however since SWV measures 2 datapoints, we have to multiply the
#bandwidth by 2 as well
set max bandwidth 80
#Set potential window.
#The max expected potential for SWV is EEnd + EAmp * 2 - EStep.
#This measurement would also work without this command since it
#stays within the default potential window of -1.1 V to 1.1V
set range minmax da -500m 690m
#Set current range for a maximum expected current of 2 uA
set range ba 2u
#Disable autoranging
set autoranging ba 2u 2u
#Turn cell on for measurement
cell on
#Perform SWV
meas_loop swv p ¢ £ g -500m 500m 10m 100m 10
#Send package with set potential,
#”forward current - reverse current”,
#”forward current”
#”reverse current”
pck start
pck add p
pck add c
pck add f
pck add g
pck _end
endloop
#Turn off cell when done or aborted
on_finished:
cell off

T Q

Q

Example output:

e «— ack of ‘e’ cmd

MO002 « start of measurement loop

Pda7F85E36u;ba8030DDCp,10,202;ba7FB6915p,10,202;ba7F85B39p,10,202 « data package
«— more data packages

Pda807A1 CAu;ba8030EB6p,10,202;0a80AB012p,10,202;0a807A15Cp, 10,202 « data package
«— end of measurement loop
«— newline indicating end of script

Page | 71 PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

13.4 12C example - temperature sensor

The example script below reads the 16bit temperature value from the ADT7420 sensor using 12C. This is
the internal temperature sensor on the Pico. Note that the senor has an 12C address 0x48.

e
Most significant bits
var m
Least significant bits
var 1
Acknowledge
var a
Status / buffer register
var s
Array with Write data
array w 2
Array with Read data
array r 2
store var a 0i ja
Configure I2C GPIOs and set it to 100k clock, 7 bit address
set gpio cfg 0x0300i 2
i2¢c_config 100k 7
Configure the sensor for 16bit mode with continuous conversion
array set w 0i 0x03i
array set w 1i 0x801
i2c write 0x48i w 2 a
Read back value
i2c write read 0x048i w 1 r 1 a
array get r 0i s
if s != 0x801
send string "ERROR: register did not change."
abort
endif
Wait for temperature measurement to become ready
This takes about 250ms and can be read from bit 7 in register 0x02
wait 250m
store var s 0x80i ja
array set w 0i 0x021
loop s & 0x801
i2c write byte 0x48i 0x02i a
i2c_read byte 0x48i s a
endloop
Read temperature values
i2c write byte 0x48i 0x00i a
i2c read 0x48i r 2 a
array get r 0Oi m
array get r 11 1
Send values to user
pck start
pck _add m
pck _add 1
pck _end

Example output:

e «— ack of ‘e’ cmd
L « Start of loop
+ «— End of loop

Paa800000Ai;aa80000E9i < Temperature data package

Page | 72 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

13.5 12C example - Real time clock

The below example script demonstrates the use of 12C in combination with the S-35390 RTC that can
be found on the EmStat Pico development board. It sets the time and date to the arbitrary value of
2:14Am 29-8-97. Then it will wait 10 seconds and reads back the time.
e
var a
var d
store var a 01 ja
var i
store var i 0i ja
array r /i
array w /i
Year = '97
array set w 0i OxE9i
Month = August
array set w 1i 0x101
Day = 29
array set w 2i 0x94i
Day of week = friday
array set w 31 OxAOQ1
Hour = 2 AM
array set w 41 0x401
Minute = 14
array set w 51 0x88i
Seconds = 0
array set w 61 0x001
Configure I2C GPIOs and set it to 100k clock, 7 bit address
set gpio cfg 0x0300i 2
i2c¢ _config 100k 7
Write data to real-time data registers
i2c write 0x321i w 7i a
Printing the time as it was written.
i2¢c read 0x32i r 71 a
store var i 0i ja
loop 1 < 71
array get r i d
pck start
pck add d
pck _end
add var i 11
endloop
pck _end
Wait ~10 seconds
send string "Waiting for the time to change."
wait 9500m
Read data from real-time data registers
i2c read 0x32i r 71 a
store var i 0i ja
loop 1 < 71
array get r i d
pck start
pck add d
pck_end
add var 1 11
endloop

Page | 73 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

Example output:
e
PL
aa80000E9;;
aa8000010;i;
aa8000094;
aa80000A0;;
aa8000040i;
aa8000088;;
aa8000000i
+
TWaiting for the time to
change.
PL
aa80000E9;;
aa8000010i;
aa8000094i;
aa80000A0;;
aa8000040i;
aa8000088;;
aa8000008i
+

The raw communication over 12C is displayed below. The top line contains the SCL, the line below that is
SDA. The bottom lines of each row represent the interpreted data.

+200000 s +200100 ps +200200 ps +200300 s +200400 s +200500 s +200600 ps +200700 s +200¢

Ui AU Ui AU Ui AR AR U
[[Mn_r ﬁ

@00000000 OO0 OO 00009006.00000000 OCLE0EE D00 eT PIEREE®
< Address wite: 32 (A DatawiieiEy AN Datawites 10 (A Datawiterod (A Demwiteiad fAX Damwiterdd A Datawite:ss A Damwite:od YA

{ Address write: 32 /(W

+202100 us +202200 us +202300 s +202400 us +202500 us +202500 s +202700 us +202800 us
' I ' ' ' ' | ' ' ' ' | ' ' ' ' I ' ' ' ' | ' ' ' ' | ' ' ' ' | ' ' ' ' | '

AN I D A) B R RN AN [l [T L=

@000000@& OO COeDTDes PP DT 000000@0.ﬂ0000006 LOCOLLOO®
{_Addressreot: 22 /R AN Datareatied A Dotareadi 0 @) Dotmreakiod YA DoteresdiA0 jAX Dolereadi®0 @) Domeadits AKX Damreadion U@

(address read: 32 /R’

2683200 s +10683300 ps +10633400 ps +10683500 ps +10683600 ps +10633700 ps +10683800 ps +10633500 s +1068400
| ' ' ' ' | ' ' ' ' | ' ' ' ' | ' ' ' ' | ' ' ' ' | ' ' ' ' | ' ' ' ' | ' ' ' ' |

T U A AU A A R A A A A U A U A A PR e U A A e =
[I D D N e A BN AR [[__T1 [T

@OGDQOGQG L0000 PRI TD 9@000000.00000000 00000000 0000008 oI
adgessreod: 2 R Dewressibs X Detreadiin @K bewrestios @ Dawreadia X Demresdi) oewreatss @ bewredios W@

(addressread: 32)R)

Page | 74 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

13.6 12C example - EEPROM example

This example demonstrates the use of the 24 C32AT EEPROM present on the EmStat Pico dev-board.
It will write the values O to 32 to a page of the EEPROM starting at register 320.

e
Acknowledge value
var a
Loop variable
var i
Temporary value
var v
Write array, 2 bytes address + 32bytes data
array w 341
Read array, 32bytes data
array r 321
Configure I2C with 400kHz clock and 7 bit address
set gpio cfg 0x0300i 21
i2c¢ _config 400k 7i
EEPROM register address MSB (1) and LSB (64) to form 320
array set w 01 11
array set w 11 641
Write data values 0-32 to bytes 2-34 of the array
store var i 2i ja
store var v 0i ja
loop 1 < 341
array set w i v
add var i 11
add var v 11
endloop
Write to device
store var a 0i ja
i2c write 0x501i w 34i a
Handle ACK/NACK
if a != 0i
send string "FAILED to write to EEPROM"
abort
endif
Read EEPROM. Will generate NACK until write is completed.
Variable a is set to 1 to enter the loop.
store var a 1li ja
loop a != 01
Reset var a so I2C will not fail when receiving a NACK
store var a 0i ja
Note the address from the write array is reused
i2c write read 0x50i w 2i r 32i a
endloop
Print the received data
store var i 0i ja
loop i < 321
pck start
array get r i v
pck add v
pck_end
add var 1 11
endloop

Page | 75 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

EEPROM example output:

e «— ack of ‘e’ cmd

L « Start of loop

+ «— End of loop

L « Start of loop

+ «— End of loop

L « Start of loop

Paa8000000i « Data (0x00) read from EEPROM
Paa8000001i « Data (0x01) read from EEPROM
Paa800001Ei « Data (Ox1E) read from EEPROM
Paa800001Fi « Data (0x1F) read from EEPROM
+ < End of loop

Page | 76

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

14 Error handling

Errors can occur that prevent the execution of the MethodSCRIPT. These errors can occur either during
the parsing of the script or during the execution of the script (runtime). If the error occurs during parsing,
the line nr and character nr where the error occurred will be reported. During runtime, only the line nr will
be reported. A command that returns an error will not return an extra newline ‘\n’ after the newline of the

error message.

Parsing error format:

IXXXX: Line L, Col C\n

Runtime error format:

IXXXX: Line L\n

Where:

XXXX = The error code, see “Table 7 Error codes”
L = Line nr, starting at 1
C = Line character nr, starting at 1

The reported line number for runtime errors does not count comment lines. For parsing errors, the

comment lines do count.

Code | Name Description

(Hex)

0000 | STATUS_OK Everything worked as expected

0001 | STATUS_ERR An unspecified error has occurred

0002 | STATUS_INVALID_VT An invalid Value Type has been used

0003 | STATUS_UNKNOWN_CMD The command was not recognized

0004 | STATUS_REG_UNKNOWN Unknown Register

0005 | STATUS_REG_READ_ONLY Register is read-only

0006 | STATUS_WRONG_COMM_MODE Communication mode invalid

0007 | STATUS_BAD_ARG An argument has an unexpected value

0008 | STATUS_CMD_BUFF_OVERFLOW Command exceeds maximum length

0009 | STATUS_CMD_TIMEOUT The command has timed out

O00A | STATUS_REF_ARG_OUT_OF_RANGE A var has a wrong identifier

000B | STATUS_OUT_OF_VAR_MEM Cannot reserve the memory needed for this var

000C | STATUS_NO_SCRIPT_LOADED Cannot run a script without loading one first

000D | STATUS_INVALID_TIME The given (or calculated) time value is invalid for
this command

O00E | STATUS_OVERFLOW An overflow has occurred while averaging a
measured value

OOOF | STATUS_INVALID_POTENTIAL The given potential is not valid

0010 | STATUS_INVALID_BITVAL A variable has become either "NaN" or "inf"

0011 | STATUS_INVALID_FREQUENCY The input frequency is invalid

0012 | STATUS_INVALID_AMPLITUDE The input amplitude is invalid

0013 | STATUS_NVM_ADDR_OUT_OF_RANGE Non-volatile Memory address invalid

0014 | STATUS_OCP_CELL_ON_NOT_ALLOWED Cannot perform OCP measurement when cell
on

0015 | STATUS_INVALID_CRC CRC invalid

Page | 77

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

0016 | STATUS_FLASH_ERROR

An error has occurred while reading / writing
flash

0017 | STATUS_INVALID_FLASH_ADDR

The specified flash address is not valid for this
device

0018 | STATUS_SETTINGS_CORRUPT

The device settings have been corrupted

0019 | STATUS_AUTH_ERR

Authentication error

001A | STATUS_CALIBRATION_INVALID

Calibration invalid

001B | STATUS_NOT_SUPPORTED

This command or part of this command is not
supported by the current device

001C | STATUS_NEGATIVE_STEP

Step Potential cannot be negative for this
technique

001D | STATUS_NEGATIVE_EPULSE

Pulse Potential cannot be negative for this
technique

001E | STATUS_NEGATIVE_EAMP

Amplitude cannot be negative for this technique

001F | STATUS_TECH_NOT_LICENCED

Product is not licensed for this technique

0020 | STATUS_MULTIPLE_HS

Cannot have more than one high speed and/or
max range mode enabled (EmStat Pico)

0021 | STATUS_UNKNOWN_PGS_MODE

The specified PGStat mode is not supported

0022 | STATUS_CHANNEL_NOT_POLY_WE

Channel set to be used as Poly WE is not
configured as Poly WE

0023 | STATUS_INVALID_FOR_PGSTAT_MODE

Command is invalid for the selected PGStat
mode

0024 | STATUS_TOO_MANY_EXTRA_VARS

The maximum number of vars to measure has
been exceeded

0025 | STATUS_UNKNOWN_PAD_MODE

The specified PAD mode is unknown

0026 | STATUS_FILE_ERR

An error has occurred during a file operation

0027 | STATUS_FILE_EXISTS

Cannot open file, a file with this name already
exists

0028 | STATUS_ZERO_DIV

Variable divided by zero

0029 | STATUS_UNKNOWN_GPIO_CFG

GPIO pin mode is not known by the device

002A | STATUS_WRONG_GPIO_CFG

GPIO configuration is incompatible with the
selected operation

002B | STATUS_COMM_CRC_ERR

CRC of received line was incorrect (CRC16-ext)

002C | STATUS_COMM_SEQUENCE_WARN

ID of received line was not the expected value
(CRC16-ext)

002D | STATUS_COMM_LENGTH_ERR

Received line was too short to extract a header
(CRC16-ext)

002E | STATUS_SETTINGS_NOT_INITED

Settings are not initialized

002F | STATUS_INVALID_CHAN

Channel is not available for this device

0030 | STATUS_CAL_ERROR

Calibration process has failed

0031 | STATUS_COMM_DISCONNECT

Comm interface disconnected during ongoing
communication

0032 | STATUS_CELL_OVERLOAD

Critical cell overload, aborting measurement to
prevent damage.

0033 | STATUS_FLASH_ECC_ERR

FLASH ECC error has occurred

0034 | STATUS_FLASH_PROGRAM_FAIL

Flash program operation failed

0035 | STATUS_FLASH_ERASE_FAIL

Flash Erase operation failed

0036 | STATUS_FLASH_LOCKED

Flash page/block is locked

0037 | STATUS_FLASH_WRITE_PROTECTED

Flash write operation on protected memory

0038 | STATUS_FLASH_BUSY

Flash is busy executing last command.

Page | 78

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

0039 | STATUS_FLASH_BAD_BLOCK Operation failed because block was marked as
bad

O0BA | STATUS_FLASH_INVALID_ADDR The specified address is not valid

003B | STATUS_FS_MOUNT_ERR An error has occurred while attempting to
mount the filesystem

003C | STATUS_FS_FORMAT_ERR An error has occurred while attempting to
format the filesystem memory

003D | STATUS_SPI_TIMEOUT A timeout has occurred during SPI
communication

OO3E | STATUS_TIMEOUT A timeout has occurred somewhere

OO3F | STATUS_CALIBRATIONS_LOCKED The calibrations registers are locked, write
actions not allowed.

0040 | STATUS_FLASH_NOT_SUPPORTED Memory module not supported.

0041 | STATUS_FS_INVALID_FORMAT Flash memory format not recognized or
supported.

0042 | STATUS_REGISTER_ACCESS_DENIED This register is locked for current permission
level.

0043 | STATUS_REG_WRITE_ONLY Register is write-only

4000 | STATUS_SCRIPT_SYNTAX_ERR The script contains a syntax error

4001 | STATUS_SCRIPT_UNKNOWN_CMD The script command is unknown

4002 | STATUS_SCRIPT_BAD_ARG An argument was invalid for this command

4003 | STATUS_SCRIPT_ARG_OUT_OF_RANGE An argument was out of range

4004 | STATUS_SCRIPT_UNEXPECTED_CHAR An unexpected character was encountered

4005 | STATUS_SCRIPT_OUT_OF_CMD_MEM The script is too large for the internal script
memory

4006 | STATUS_SCRIPT_UNKNOWN_VAR_TYPE The variable type specified is unknown

4007 | STATUS_SCRIPT_VAR_UNDEFINED The variable has not been declared

4008 | STATUS_SCRIPT_INVALID_OPT_ARG This optional argument is not valid for this
command

4009 | STATUS_SCRIPT_INVALID_VERSION The stored script is generated for an older
firmware version and cannot be run

400A | STATUS_SCRIPT_INVALID_DATATYPE The parameter data type (float/int) is not valid for
this command

400B | STATUS_SCRIPT_NESTED_MEAS_LLOOP Measurement loops cannot be placed inside
other measurement loops

400C | STATUS_SCRIPT_UNEXPECTED_CMD Command not supported in current situation

400D | STATUS_SCRIPT_MAX_SCOPE_DEPTH Scope depth too large

400E | STATUS_SCRIPT_INVALID_SCOPE The command had an invalid effect on scope
depth

400F | STATUS_SCRIPT_INDEX_OUT_OF_RANGE Array index out of bounds

4010 | STATUS_SCRIPT_I2C_NOT_CONFIGURED 12C interface was not initialized with i2c_config
command

4011 | STATUS_SCRIPT_I2C_UNHANDLED_NACK This is an error, NAck flag not handled by script

4012 | STATUS_SCRIPT_I2C_ERR Something unexpected went wrong. Could be a
bug in the firmware

4013 | STATUS_SCRIPT_I2C_INVALID_CLOCK 12C clock frequency not supported by hardware

4014 | STATUS_SCRIPT_HEX_OR_BIN_FLT Non integer Sl vars cannot be parsed from hex
or binary representation

4015 | STATUS_INVALID_WAKEUP_SOURCE The selected (combination of) wake-up source is
invalid

Page | 79

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

4016 | STATUS_WAKEUP_TIME_NOT_VALID RTC was selected as wake-up source and
selected time is not supported

4017 | STATUS_SCRIPT_ARRAYSIZE_MISMATCH Array size does not match expected size

4018 | STATUS_SCRIPT_UNEXPECED_END The script has ended unexpectedly.

4019 | STATUS_SCRIPT_DEVICE_NOT_MULTI The script command is only valid for a
multichannel (combined) device

4020 | STATUS_SCRIPT_TIMEOUT A timeout has occurred for one of the script
commands

7FFF | STATUS_FATAL_ERROR A fatal error has occurred

FFFF | STATUS_ASSERT_FAIL Used for DEBUG - an assertion failed

8000 | STATUS_DEVICE_SPECIFIC Device specific error occurred

8001 | STATUS_DS_SELFTEST_CRYSTAL Switching to 16 MHz crystal failed

Table 7 Error codes

Page | 80 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

15 Device specific information

15.1 PGStat mode properties

EmStat Pico
Low speed mode Value min Value max
Bandwidth 0.016 Hz 100 Hz
Potential range -1.25V 20V
Dynamic potential 2.2V 2.2V
window
High speed mode Value min Value max
Bandwidth 0.016 Hz 200 kHz
Potential range 1.7V 20V
Dynamic potential 1.214V 1.214V
window
Max range mode Value min Value max
Bandwidth 0.016 Hz 100 Hz
Potential range 1.7V 20V
Dynamic potential 26V 26V
window

Table 8: EmStat Pico PGStat mode properties (see EmStat Pico datasheet for more information)

EmStat4HR

The EmStat4 low speed, high speed and max range mode are equivalent.
Low speed mode Value min Value max
High speed mode
Max range mode
Bandwidth - 500 kHz
Potential range -6.0V 6.0V
Dynamic potential window | -6.0 V 6.0V
Galvanostatic mode Value min Value max
Bandwidth - 500 kHz
Current range -200 mA 200 mA

Table 9: EmStat4HR PGStat mode properties (see EmStat4HR datasheet for more information)

Page | 81

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

EmStat4lL R

The EmStat4 low speed, high speed and max range mode are equivalent.
Low speed mode Value min Value max
High speed mode
Max range mode
Bandwidth - 500 kHz
Potential range -3.0V 3.0V
Dynamic potential window | -3.0 V 3.0V
Galvanostatic mode Value min Value max
Bandwidth - 500 kHz
Applied current range -30 mA 30 mA

Table 10: EmStat4LR PGStat mode properties (see EmStat4LR datasheet for more information)

15.2 (G) EIS properties

PEIS Emstat Pico | Emstat4
Max. Amplitude (Vrms) 0.429 0.900
Max. frequency (Hz) 200000 200000
GEIS Emstat Pico | Emstat4
Max. Amplitude (Arms) NA 0.900 x CR!
Max. frequency (Hz) NA 200000
1. With GEIS the amplitude is set as a factor of the selected current-range (CR) e.g. at

10mA CR the max. amplitude = 9.52mA.

15.3 Hibernate

EmStat Pico

The hibernate command on the EmStat Pico will disable the internal ADT7420 temperature sensor on the
EmStatPico when GPIO8 and GPIO9 are configured for 12C to save more power. Power consumption
with the temperature sensor enabled is about 250uA higher that it would be with the sensor disabled. It
is up to the user to configure these pins for 12C prior to entering hibernate or disable the temperature
sensor manually. See 11.53 set_gpio_cfg for more information on configuring GPIO.

Limitations:

On the EmStat Pico arrays are not preserved when a hibernate command is issued. The minimum
hibernation time is 125ms. STATUS_SCRIPT_BAD_ARG (4002) will be thrown when the specified time
value is too short.

Page | 82 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

15.4 Current ranges

EmStat Pico
Low speed mode Current range index
current ranges
100 nA 0x0
1.95 UA 0x1
3.91 UA 0x2
7.81 UA 0x3
15.63 UA Ox4
31.25 UuA 0x5
62.5 UA Ox6
125 UA Ox7
250 uA 0x8
500 uA 0x9
1 mA OxA
5mA 0xB
High speed mode Current range index
current ranges
100 nA 0x80
1UA 0x81
6.25 uA 0x82
12.5 UA 0x83
25 UA 0x84
50 uA 0x85
100 UA 0x86
200 uA 0x87
1 mA 0x88
5mA 0x89
Max range mode Current range index
current ranges
100 nA 0x80
1UA 0x81
6.25 uA 0x82
12.5 UA 0x83
25 UA 0x84
50 UA 0x85
100 UA 0x86
200 uA 0x87
1 mA 0x88
5mA 0x89

Table 11: EmStat Pico current ranges
Page | 83

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

EmStat4L R

Potentiostat Current range index

current ranges

1nA 0x03

10 nA 0x06

100 nA 0x09

1UA 0x0C

10 UA OxOF

100 UA 0x12

1mA 0x15

10 mA 0x18

Galvanostat Current range index

current ranges

10 nA 0x06

1 UA 0x0C

100 UA 0x12

10 mA 0x18

Table 12: EmStat4LR current ranges

EmStat4HR

Potentiostat Current range index

current ranges

100 nA 0x09

1 UA 0x0C

10 UA OxOF

100 UA 0x12

1TmA 0x15

10 mA 0x18

100 mA 0x1B

Galvanostat Current range index

current ranges

1 UA 0x0C

100 UA 0x12

10 mA 0x18

100mA 0x1B

Table 13: EmStat4HR current ranges

Page | 84

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

15.5 Supported variable types for meas command

EmStat Pico

Variable types
VT_POTENTIAL
VT_POTENTIAL_CE
VT_POTENTIAL_RE
VT_POTENTIAL_WE_VS_CE
VT_POTENTIAL_AINO
VT_POTENTIAL_AIN1
VT_POTENTIAL_AIN2
VT_CURRENT
VT_TEMPERATURE

Table 14: EmStat Pico measurable variable types

EmStat4

Variable types
VT_POTENTIAL
VT_POTENTIAL_CE
VT_POTENTIAL_RE
VT_POTENTIAL_WE_VS_CE
VT_POTENTIAL_AINO
VT_CURRENT
VT_TEMPERATURE

Table 15 EmStat4 measurement variable types

Page | 85 £ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

15.6 Device GPIO pin configurations

EmStat Pico
Bitmask Pin name Mode 0 Mode 1 Mode 2
0x0001 GPIO0_PWM GPIO GPIO PWM (Not implemented)
Input Output
0x0002 GPIO1_SPI_MISO | GPIO GPIO SD card
Input Output
0x0004 GPIO2_SPI_CLK GPIO GPIO SD card
Input Output
0x0008 GPIO3_SPI_MOSI | GPIO GPIO SD card
Input Output
0x0010 GPIO4_SPI_CS0 GPIO GPIO SD card
Input Output
0x0020 GPIO5 GPIO GPIO
Input Output
0x0040 GPIO6 GPIO GPIO
Input Output
0x0080 GPIO7_WAKE GPIO GPIO Wake from sleep (Active low)
Input Output
0x0100 12C_SCL GPIO GPIO 12C
Input Output
0x0200 12C_SDA GPIO GPIO 12C
Input Output
Table 16: EmStat Pico GPIO pin configurations
EmStat4
Bitmask | Pin name Mode 0 Mode 1 Mode 2
0x0001 GPIOO GPIO Input GPIO Output
0x0002 GPIO1 GPIO Input GPIO Output
0x0004 GPIO2 GPIO Input GPIO Output
0x0008 GPIOS GPIO Input GPIO Output
0x0010 GPIO4 GPIO Input GPIO Output
0x0020 GPIO5_WAKE | GPIO Input GPIO Output | Wake from sleep (Active low)
0x0040 GPIO6_PWM GPIO Input GPIO Output | PWM (Not implemented)
Table 17: EmStat4 GPIO pin configurations
Page | 86

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

15.7 Other device specific properties

EmStat Pico

Property

Number of pgstat channels 2

File storage SD card (SPI) / NAND-flash (Sensit series)

Table 18: Other device specific properties for EmStat Pico

EmStat4

Property

Number of pgstat channels 1

File storage NAND-flash

Table 19: Other device specific properties for EmStat4

Page | 87

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

16 Version changes

Version

Version

Version

Version

Version

Version

Page | 88

1.1 Rev 1

Added support for EmStat Pico firmware v1.1

Added “Tags” chapter

Added Max range pgstat mode for the EmStat Pico

Added BiPot / Poly WE support

Added PAD technique

The ‘€’ command now replies with an extra \n’ to separate the script response from the ‘e’
command response

Added ability to use whitespace in script (tabs and spaces)

Added error code documentation

1.1 Rev 2

Corrected EIS auto ranging information
Added information about loop command output

1.1 Rev 3

Corrected OCP parameters, does not have set potential
Corrected set_pgstat_chan command example

Corrected SWV example comment about bandwidth

Correct loop example “add” command should be “add_var”
Corrected inconsistent names for low power / low speed mode

1.1 Rev 4
Corrected endloop command was sometimes called end_loop

1.2 Rev 1

Added conditional statements (if, else, elseif, endif)

Added abort command

Added breakloop command

Added external storage (SD Card) commands

Added new variable types

Added supported variable types table

Added bitwise operators

Added new GPIO commands (get_gpio, set_gpio_cfg, set_gpio_pullup)
Added support for integer variables

Updated error codes

Added get_time command

Added timer_start and timer_get commands

Added set_int, await_int commands

Added ability to input hexadecimal or binary values

Added support for arrays

Added support for specifying what metadata to send in measurement packages
Added nscans optional parameter for Cyclic Voltammetry

Added hibernate command

Added 12C interface

Added 12C example

1.2Rev 2

Added EEPROM example

Moved EmStat Pico specific information to chapter “device specific information”
Added reference to comparator in “loop” and “if” command documentation
Removed outdated warning that meas_eis_loop does not support autoranging.

£ PalmSens

MethodSCRIPT communication protocol v1.3

last document update: 19-1-2022

Version 1.3 Rev 1

Page | 89

Added 12C generic NACK for address or data (for devices that cannot distinguish)
Added EmStat4 information

set_autoranging changed having additional vartype parameter

Added eis_tdd command to retrieve EIS time domain data

Replaced set_cr and set_potential_range commands with more generic set_range and
set_range_minmax commands

Added CP technique

Added LSP technique

Added Galvanostatic EIS technique

Added set_i command

Updated error codes

Updated features section

Updated terminology

set_pgstat_mode now resets all mode settings to default values

Added set_channel_sync command

Added bitwise operation commands

Added float_to_int and int_to_float commands

Added galvanostat pgstat mode

Added set_acquisition_frac command

£ PalmSens

	1 Introduction
	2 Features
	2.1 Features
	2.2 Planned future features
	2.3 Supported devices

	3 Script format
	4 MethodSCRIPT variables
	4.1 Script command variables
	4.2 Measurement data package variables

	5 Interpreting measurement data packages
	5.1 Package format
	5.2 Variable sub package format
	5.3 Package parsing example

	6 Measurement loop commands
	6.1 Measurement loop example
	6.2 Measurement loop output

	7 Variable Types
	8 Script argument types
	8.1 var
	8.2 literal
	8.3 var_type
	8.4 integer (int8, int16, int32, uint8, uint16, uint32)
	8.5 comparator
	8.6 string
	8.7 Optional arguments

	9 Optional arguments
	9.1 poly_we
	Arguments
	Example

	9.2 nscans
	Arguments
	Example
	Output example with nscans(2):

	9.3 meta_msk
	Arguments
	Example

	9.4 eis_tdd
	Arguments
	Example

	9.5 eis_opt
	Arguments
	Example

	9.6 eis_acdc
	Arguments
	Example

	10 Tags
	10.1 on_finished:
	Example

	11 Script commands
	11.1 var
	Arguments
	Example

	11.2 store_var
	Arguments
	Example

	11.3 array
	Arguments
	Example

	11.4 array_set
	Arguments
	Example

	11.5 array_get
	Arguments
	Example

	11.6 copy_var
	Arguments
	Example

	11.7 add_var
	Arguments
	Example

	11.8 sub_var
	Arguments
	Example

	11.9 mul_var
	Arguments
	Example

	11.10 div_var
	Arguments
	Example

	11.11 bit_and_var
	Arguments
	Example

	11.12 bit_or_var
	Arguments
	Example

	11.13 bit_xor_var
	Arguments
	Example

	11.14 bit_lsl_var
	Arguments
	Example

	11.15 bit_lsr_var
	Arguments
	Example

	11.16 bit_inv_var
	Arguments
	Example

	11.17 int_to_float
	Arguments
	Example

	11.18 float_to_int
	Arguments
	Example

	11.19 set_e
	Arguments
	Example

	11.20 set_i
	Arguments
	Example

	11.21 wait
	Arguments
	Example

	11.22 set_int
	Arguments
	Example

	11.23 await_int
	Arguments
	Example

	11.24 loop
	Arguments

	11.25 endloop
	Arguments

	11.26 breakloop
	Arguments

	11.27 if, elseif, else, endif
	Arguments for if, elseif commands
	Example

	11.28 meas
	Arguments
	Example

	11.29 meas_loop_lsv
	Arguments
	Optional arguments
	Example

	11.30 meas_loop_lsp
	Arguments
	Optional arguments
	Example

	11.31 meas_loop_cv
	Arguments
	Optional arguments
	Example

	11.32 meas_loop_dpv
	Arguments
	Optional arguments
	Example

	11.33 meas_loop_swv
	Arguments
	Optional arguments
	Example

	11.34 meas_loop_npv
	Arguments
	Optional arguments
	Example

	11.35 meas_loop_ca
	Arguments
	Optional arguments
	Example

	11.36 meas_loop_cp
	Arguments
	Optional arguments
	Example

	11.37 meas_loop_pad
	Arguments
	Optional arguments
	Example

	11.38 meas_loop_ocp
	Arguments
	Example

	11.39 meas_loop_eis
	Arguments
	Example

	11.40 meas_loop_geis
	Arguments
	Example

	11.41 set_autoranging
	Arguments
	Example 1
	Example 2

	11.42 pck_start
	Arguments
	Optional arguments meta_msk
	Example

	11.43 pck_add
	Arguments
	Example

	11.44 pck_end
	Arguments
	Optional arguments
	Example

	11.45 set_max_bandwidth
	Arguments
	Example

	11.46 set_cr (deprecated)
	Arguments
	Example

	11.47 set_range
	Arguments
	Example

	11.48 set_range_minmax
	Arguments
	Example

	11.49 cell_on
	Arguments
	Example

	11.50 cell_off
	Arguments
	Example

	11.51 set_pgstat_mode
	Arguments
	Example

	11.52 send_string
	Arguments
	Example

	11.53 set_gpio_cfg
	Arguments
	Example

	11.54 set_gpio_pullup
	Arguments
	Example

	11.55 set_gpio
	Arguments
	Example

	11.56 get_gpio
	Arguments
	Example

	11.57 set_pot_range (deprecated)
	Arguments
	Example

	11.58 set_pgstat_chan
	Arguments
	Example

	11.59 set_poly_we_mode
	Arguments
	Example

	11.60 get_time
	Arguments
	Example

	11.61 file_open
	Arguments
	Example

	11.62 file_close
	Arguments
	Example

	11.63 set_script_output
	Arguments
	Example

	11.64 hibernate
	Arguments
	Example

	11.65 i2c_config
	Arguments
	Example

	11.66 i2c_write_byte
	Arguments
	Example

	11.67 i2c_read_byte
	Arguments
	Example

	11.68 i2c_write
	Arguments
	Example

	11.69 i2c_read
	Arguments
	Example

	11.70 i2c_write_read
	Arguments
	Example

	11.71 abort
	Arguments
	Example

	11.72 timer_start
	Arguments
	Example

	11.73 timer_get
	Arguments
	Example

	11.74 set_channel_sync
	Arguments
	Example

	11.75 set_acquisition_frac
	Arguments
	Example

	12 PGStat Modes
	12.1 PGStat mode off
	12.2 PGStat mode low speed
	12.3 PGStat mode high speed
	12.4 PGStat mode max range
	12.5 PGStat mode poly_we
	12.6 PGStat mode galvanostat
	12.7 PGStat mode OCP

	13 Script examples
	13.1 EIS example
	13.2 LSV example
	13.3 SWV example
	13.4 I2C example – temperature sensor
	13.5 I2C example – Real time clock
	13.6 I2C example - EEPROM example

	14 Error handling
	15 Device specific information
	15.1 PGStat mode properties
	EmStat Pico
	EmStat4HR
	EmStat4LR

	15.2 (G) EIS properties
	15.3 Hibernate
	EmStat Pico

	15.4 Current ranges
	EmStat Pico
	EmStat4LR
	EmStat4HR

	15.5 Supported variable types for meas command
	EmStat Pico
	EmStat4

	15.6 Device GPIO pin configurations
	EmStat Pico
	EmStat4

	15.7 Other device specific properties
	EmStat Pico
	EmStat4

	16 Version changes
	Version 1.1 Rev 1
	Version 1.1 Rev 2
	Version 1.1 Rev 3
	Version 1.1 Rev 4
	Version 1.2 Rev 1
	Version 1.2 Rev 2
	Version 1.3 Rev 1

