

 Page 1/20

Last document update: June 28, 2023

PSExampleApp: Configurable and Open-Source App for Sensor Applications

 Page 2/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

1 Introduction ... 3

2 Application Flow ... 4

2.1 User login, start measurement and connecting .. 4

2.2 Select analyte, insert sensor.. 5

2.3 Apply a droplet, perform a measurement, and show the result .. 6

2.4 Show plot and overview of measurement history .. 7

3 App Configuration .. 8

3.1 Custom style .. 8

3.2 Custom analyte .. 9

3.2.1 Analyte parameters in json file explained ... 9

3.2.2 Converting the measured current to concentration ... 10

3.2.3 Example calculation A ... 11

3.2.4 Example calculation B .. 12

3.3 Custom method ... 13

4 Use Visual Studio to modify the code .. 14

5 Application structure ... 15

5.1 The Model-View-ViewModel (MVVM) .. 15

5.2 Services, DTO’s and repositories ... 16

5.3 Project’s structure ... 17

5.4 Dependency injection .. 18

5.5 Navigation ... 18

5.6 Connection .. 19

5.7 PS simple wrapper ... 19

5.8 Adding views and view models ... 19

5.9 Database .. 20

 Page 3/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

The PSExampleApp is a simple open-source application that guides a user to do a measurement with
a PalmSens device to measure concentrations in a liquid sample. The app can be re-configured
without code for use with (bio)sensors measuring a specific analyte using a linear calibration curve.

The application provides clear instructions, so that the user follows a simple flow to connect to a
device and run a measurement with just a few taps.

The app’s default configuration is set for detection of Heavy Metals using ItalSens screen-printed-
electrodes for heavy metal detection.

It can be download from the stores (Apple Appstore and Google Playstore) and configured for your
own need or serve as an example for your own app.

In the next chapter an overview will be given of the functionality of the application. It will describe
the flow that the user goes through to do a measurement. The succeeding chapters will go more in
depth. First it will describe how to configure the app by using the admin options and the last chapter
serves as a technical guideline for customizing and developing the application from code.

 Page 4/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

When a user starts the application for the first time, a screen will be shown
where a user must be created. The application has a simple user management
functionality where a user can be created by providing a username. New users
can be added, or existing users can be changed (logged in) or removed at will.
Every time the app starts it will login in with the last selected user. The user
functionality mainly exists to couple a measurement to a user. This way
multiple users can use the app on the same device without seeing each other’s
measurements. Users can be deleted by swiping the user name to the right in
the user selection list. Note that deleting a user means that all measurement
done by this user will be lost.

In the future different user roles can be added. This way you can have an
admin user that has access to more advanced options.

From the Home screen the user can start a measurement. Meanwhile in the
background the Bluetooth scanner starts scanning for available instruments.
The following instruments from PalmSens BV are supported:

▪ Sensit Smart
▪ Sensit BT
▪ EmStat3/3+ Blue
▪ EmStat Go
▪ PalmSens4

When user decides to run a measurement, he will be presented with a list of devices that are found.
A user can select a device from the list to connect.

 Page 5/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

After the application has successfully connected to a device a user has to select an analyte to
continue. The application comes with a few default analytes. However, a user can upload a custom
analyte with its custom configuration. This process is described in chapter 3.2.

After selecting an analyte and setting a measurement name the measurement will start.

 Page 6/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

When the measurement is completed, the user can continue to the measurement finished screen. In
this screen a user can take a maximum amount of three pictures that will be attached to the
measurement. A user can also share a report. This will generate a PDF report with the measurement
result and the pictures attached. This report can be shared through email, Google Drive, Whatsapp
etc.

 Page 7/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

From the measurement finished screen the user can also get a display of the plot with the
measurement data. Aside from this a user can start a new measurement or go to the home screen.

A user can open a list of previous measurements from the status bar. If a measurement is selected
from this list, then the user will be presented with a view that is similar to the measurement finished
view with the same functionality.

Measurements can be deleted from the list by swiping it to the right. All measurement data and
photo’s will be deleted.

 Page 8/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

The application can be configured to fit the styling of the
user.

To access the app configuration menu, you have to put a
user in admin mode. This can be done from the user
settings (cogwheel). When the admin mode is toggled on
then from the home screen you can configure the
application with the following options:

You can change the following styling of the application:

▪ Title that is shown in the top screen
▪ The background image of the application

Both options can be changed from the admin options.
These changes will only take effect after the application has
been restarted. When changing the background consider
that the styling of the application is based on a dark
background (for example white buttons with white frames).
Changing it to a light background will make it hard to read
for the user.

Also note that the background will be stretched according to the rotation of the screen and the
screen dimensions. Abstract backgrounds are recommended.

 Page 9/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

The heavy metal application comes with its own default analytes
that a user can use. This analyte calculates the concentration
from the measurement data.

A user can add their own analyte configuration from the
Configure Analyte menu. In this menu you can import an analyte
by selecting a file from either the device itself or from another
source like email or Google Drive.

The file that is selected must be a json file with the following
properties:

In the example here you see the properties with its values. If you
make a custom analyte, then you have to use the same
properties, but you can change the values.

• analyteName: name of the analyte that the
app uses.

• PeakWindowXMin: potential in Volt where to start searching for peaks.

• PeakWindowXMax: potential in Volt where to stop searching for peak

• PeakMinWidth: minimum width in Volt of a peak at the minimum peak height. Peaks wider
than the minimum width and higher that the minimum height are considered a peak.

• PeakMinHeight: minimum peak current in µA, compared to the level baseline. Peaks wider
than the minimum width and higher that the minimum height are considered a peak.

• CalibrationCurveOffset: offset, used to convert peak current in µA to the concentration unit,
using a linear formula concentration = slope * current (µA) + offset.

• CalibrationCurveSlope: slope, used to convert peak current in µA to the concentration unit,
using a linear formula concentration = slope * current (µA) + offset.

• Concentration unit: unit of the concentration to detect, like for example parts per million
(ppm).

• Description: a small explanation of the test.

 Page 10/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

The goal of each measurement is to find the concentration of a certain analyte. The relation between
the measured current and the concentration has to be determined beforehand, by creating a
calibration curve.

A calibration curve is determined by taking samples of a known concentration, and measure the
current. An example curve is shown in Figure 1, with a linear fit. The best fit for a linear curve might
as well be a second order polynomial or exponential function.

For the sake of simplicity, this example application has default support for a linear calibration curve.
By modifying the code, a programmer can extend the types of calibration curves that are supported.

Figure 1: example calibration curve for the concentration, giving a slope of 992 ppm per µA and an

offset of 48 ppm.

The measured current is in this example app converted to a concentration using a linear function:

𝑦 = 𝑎𝑥 + 𝑏 (3— 1)

The linear function for the concentration is:

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡 (3— 2)

y = 992.11x + 47.661
R² = 0.9945

0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4

Concentration (ppm) vs peak height (µA)

Concentration (ppm)

Linear (Concentration (ppm))

 Page 11/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

▪ the concentration unit is ppm,
▪ the slope is 992 ppm per µA,
▪ with an offset of 48 ppm.

Figure 2: measured current in PSTrace, with a baseline of ~7 nA and a peak of ~4 nA.

A measured peak current of 0.004 µA will result in:

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 992 ∗ 0.004 + 47 = 51 𝑝𝑝𝑚 (3— 3)

 Page 12/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

▪ the concentration unit is ppm,
▪ the slope is 992 ppm per µA,
▪ with an offset of 48 ppm.

Figure 3 baseline of 17 nA, peak of 8 nA using the example application.

A measured peak current of 0.008 µA will result in:

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 992 ∗ 0.008 + 47 = 55 𝑝𝑝𝑚 (3— 4)

 Page 13/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

The PSExample application uses a PalmSens method (.psmethod) to execute the measurement that is
used to detect analytes, such as heavy metals. The result of this measurement is used by the analyte
to calculate the concentration.

The PSExample application comes with a default .psmethod-file which is a Differential Pulse
Voltammetry, used for Heavy Metal Detection. However, an admin user can change this method by
selecting the configure method option in the app configuration menu. Currently the analysis is set up
for Differential Pulse Voltammetry and Square Wave Voltammetry, the analysis will need to be
modified when using a different technique.

When a user selects this option, they can select a file from the device or other sources like email or
Google Drive. The file has to be of type .psmethod. When a psmethod file is selected the current
psmethod file is overwritten. This means only 1 psmethod file can be used at a time.

This example application is made to work with voltammetric methods. The concept also works for
other electrochemical techniques and impedance spectroscopy. However, an experience software
developer will have to adjust the data processing according to the electrochemical method used.

https://www.palmsens.com/software/

 Page 14/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

This example app is a great start for a custom application to control a PalmSens potentiostat. To
extend this example app:

• A C# programmer needs Visual Studio and the Xamarin SDK extension by selecting Mobile
development with .NET.

• Download the code from GitHub. To avoid build errors, make sure the path to the extracted
code is as short as possible, for example c:\code\.

• Open the PSExampleApp.sln in visual studio.

• Connect an Android phone and enable debugging mode in the developer settings of the
Android smartphone.

• Click on the green play button to start building the app:

The app is based the PalmSens .NET SDK for Android. Documentation on the SDK can be found here.

https://visualstudio.microsoft.com/vs/
https://docs.microsoft.com/en-us/xamarin/get-started/installation/windows
https://github.com/PalmSens/PSExampleApp
https://www.palmsens.com/knowledgebase-article/palmsens-sdk-for-android-xamarin/

 Page 15/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

The application is set up with Xamarin. Xamarin is a cross platform framework that makes it possible
to create applications that is compatible with Android and IOS.

The language that Xamarin uses for the front-end is XAML. The backend is written in C#.

This chapter will describe the application structure from a developer point of view.

The application uses MVVM to structure the flow of control. MVVM has 3 kind of components:

▪ View: This is the part that the user sees. With the application this means the part that is
written in XAML.

▪ ViewModel: The part that is connected to the view which sends updates of the user
interaction to the model

▪ Model: The part that contains the business logic and responsible for the data

With the MVVM structure the front-end part written in XAML connects with the viewmodel through
Bindings and commands. The commands register user interaction and sends it to the viewmodel. The
bindings make sure that the data on the view gets updated when that data is changed in the view
model.

By using bindings and commands the view doesn’t have to contain any code-behind which means
this doesn’t have to be unit tested. Also, the view model doesn’t have any connection with the view.
This means that it’s loosely coupled. The view model just updates its properties and through bindings
on the view side the view will be updated.

The model receives updates from the view model and process these updates through the business
logic. The result will be sent as notifications to the view model mainly through events. This will have
the same effect as the relation between views and viewmodels the model doesn’t know anything
about the view model. This decreases the coupling and makes the application more modular.

For more information about MVVM please visit the following link: https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm

 Page 16/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

Even though in the last chapter the model is represented as a single component. This component
consists of several types of classes:

▪ Services: These contain the business logic and can be called from the view model
▪ Repositories: Repositories are connected to the services. Repositories have method which

are responsible for manipulating or retrieving data
▪ DataOperations: The class that has the database configuration
▪ DTO’s: Data transfer objects (DTO) are classes responsible for carrying data between

processes. These classes are shared by the viewmodel and model.

The view models are connected to services. However, services are not aware of the view models
classes. They only send requested data back or send notifications through events. Services can
connect to other services to handle business logic or connect to one or more repositories to
handle data related requests (saving, retrieving etc.).

Repositories have CRUD (create, read, update, and delete) methods for data handling.
Repositories don’t have any connection to services or other repositories. They do have a
connection to the DataOperation class which has database operations

 Page 17/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

For now, repositories handle only database related actions. In the future this can also be data
related calls to export data (for example HTTP calls).

The services, repositories and data operations classes have a one-on-one interface. The
communication between the model classes and viewmodel goes through interfaces. This serves
as an extra layer of abstraction. For example, if we switch to a different kind of database then we
only have to change the concrete data operations class.

The heavy metal application is a Visual Studio solution which consist of the following projects:

PSExampleApp.Forms

This project has the view, viewmodels and front-end related helper classes like converters.

PSExampleApp.Core

This project has the services, repositories and data operations classes and their respective interfaces.
It also has helper classes only used by the model classes. The services in this project are all cross
platform.

PSExampleApp.Common

This project contains classes that are used by both the Core and Forms projects. For now, it’s only the
DTO classes and some helper classes that are used by both projects.

PSExampleApp.Android

The Android solution that is created based on the Xamarin projects. It has some specific android
configuration in the main activity class. And implementations of platform specific services.

PSExampleApp.IOS

The IOS solution that is created based on the Xamarin projects. Like the Android project it has IOS
specific configuration and services.

PalmSens.Core.Simplified.XF.Application & Infrastructure

These two projects contain interfaces for platform specific services that must be implemented in the
platform specific projects. It also contains classes that are used by those services.

 Page 18/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

The application makes use of dependency injection containers. This mean that all services,
repositories and view models are configured in the startup class of the .Forms project. To use a
service or repository you can simply add it to the constructor:

The advantages of using dependency injection with IOC containers is that first, you have to declare
outside dependencies in the constructor of the class. Which makes it less error prone. Also, it’s easier
for unit testing by using mocks for the outside dependencies. Another pro is this way makes sure you
only use 1 instance of a class is used.

If you create a viewmodel, repository or service that needs to be registered then you can add it to
the DIContainers class in the .Forms project. You can add the class to 1 of the existing methods:

You can add the class with its representing interface to the list. After that you can use the class from
constructors.

For more information about dependency injection please visit the following link:
https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection

The navigation of the application app is done with a NavigationPage. This page has a navigation stack
that keeps track of which page to display. This means that you have a home view which is the main
page. If a user navigates to other pages, then that page is being pushed on the stack. If the user is
using the back button or any other button that goes back a page, then that page is being popped of
the stack.

For the heavy metal app there is a custom navigation dispatcher to support pushing and popping of
pages asynchronously in view models instead of using code behind or view code in the view model.

To use this, you can call the static NavigationDispatcher class in the app and call the push or pop
method:

https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection

 Page 19/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

You can use the NavigationViewType to select the view where you want to navigate to. If you use the
Pop method, then you don’t have to specify a page.

The heavy metal app can connect to a PalmSens device either through Bluetooth or USB. For
Bluetooth the reader should be on. When it’s on it will detect PalmSens devices nearby. This
detection will run in the background and will reset after every 5 seconds. When a device is selected
then it will connect and disable the device detection.

The device service in the heavy metal app handles all device related functionality for the application
and serves as a mediator between the heavy metal application and the PalmSens simple wrapper.

For connecting to devices, the heavy metal app uses the PalmSens simple wrapper. This is a wrapper
class around the PalmSens core library. The simple wrapper is also used for SDK users to make
applications for PalmSens devices.

In case of adding your own custom views and view models you have to follow the following steps:

1. Add a view by creating a xaml ContentPage.
2. Add a corresponding view model by creating a C# class
3. Set the viewmodel as binding context in the code behind of the contentpage

4. Add the view to the NavigationDispatcher by adding the view to the NavigationViewType

enum and add the translation from enum to the actual page in the PageSelector method
within the NavigationDispatcher. This way a view model can use the NavigationDispatcher to
navigate to the view

5. Last step is to add the view model to the InitializeViewModels method in the DIContainers
class. This makes sure the App.GetViewModel method in step 3 can find the viewmodel. The
viewmodel is added with a transient lifecycle this means it only exists when the
corresponding view exists.

 Page 20/20

PSExampleApp: Configurable and Open-Source App for Sensor Applications

6. If you want to use services within a view model you can just add them to the constructor

The PSExampleApp uses LiteDb to store objects and data. LiteDb is a no-sql database that is
embedded. This means that the database is installed on the device that uses the application.

The way LiteDb works is that it has collections of C# classes that are saved. This means if you want to
save data to the database you have to structure this data in a C# class. With this class you can call the
IDataOperations interface. This interface has all the methods to save, load and delete data from the
database.

The following example is a save method from the user repository

The user information structured in the User class is saved to the database. If you want to load the
data, you can use the load methods of the IDataOperations interface. You must put the class you
want to load between the <T> brackets

