Getting started with PalmSens SDK
for Python

Based on PalmSens SDK v5.12

'} PalmSens

J Software Development Kits

Last revision: April 24, 2025
© 2025 PalmSens BV
www.palmsens.com

& PalmSens

Getting started with PalmSens SDK for Python

Contents

1 Contents of the PAIMSENS SDK.......ccuiiiiiiiiiiiiiiiiee ettt e e e e e e e s b eeeaaeae s 3
1.1 EXAMPIE PrOGIAMIS . .ueuuiiiiuuiiiiiitiiiiiiiiitiei s 4
1.2 Compatible devices and firMWAIE............u s 5

2 USING the SDK IN WINOOWS........eiiiiiiiiiiiiiiiieiieeeee ettt e e e eeeeeeaesae e e ssstssesassessesssssssssennennnnnnes 6
2.1 REQUITEIMEINTS ..ot 6
2.2 [Optional] Create a virtual environment in Visual Studio Codeccccoeiiiii, 6

3 WOrKING WILh FIIES ...ttt b et b et e e e nnenneneee 8
3.1 Loading a method file (.pSMEthod)oooiiiiiii 8
3.2 Setting UP @ MENOGcoooi i 9
3.3 SAVING @ MENOA ... 11
3.4 Loading and SaViNG Qatacooiieiiiiieeee e 11

4 ConNECHNG aNA MEBSUIING.uuuuuiiiiiiiiiiiiiiiiiii s 12
o R o o1 o 1= Tox 1] o (o = W0 = o PP 12
4.2 Manually controlling the deVICE..........uuuiiii i e e e e e e e eeaennan 12
G T |V == T U 1 T T PPN 12
A4 MEthOOSCRIP T M ettt ettt ettt e st et e bt e s b e anae e s e aneeenneens 14

441 SandboX MEASUIEMENTScooeieiiiiie e 14
4.5 Disconnecting from the deVICE...........uuuiiii i e e aeanas 15

I g DT ¢RI O o] = o | PP PPPRPPPIR 16

6 Appendix A: Parameters for each teChNIQUE..........ccooeiiiiiiiiiie e 18
200 R O o1 4o I] 0] 0 1= 1= 18
L A S (Y (== 4 0 =] 1 A=Y= U] o S 19
6.3 Linear Sweep Voltammetry (LSV) [0]...c.uuiii i ee e e e e e e eeaeeees 19
6.4 Differential Pulse Voltammetry (DPV) [L] .. cooeeoiiiiiiiiie et e e e eeean e eeeeeees 19
6.5 Square Wave Voltammetry (SWV) [2]..ccuueoiii i e e e e e e eees 19
6.6 Normal Pulse Voltammetry (NPV) [S]...ccuuiiiiiiiiiieiiie et e e e e e e e e eaaann e e e eaeeees 20
6.7 AC VORAMMELrY (ACV) [A] eeeeeeiiii it e e e e et e e e e e e e e aasaa e e eeaaenes 20
6.8 Cyclic VOIAMMELIY (CV) [5] cerrrrniiieeiiiiiiiiie e e e e ettt e e e e e et e e e e e e e ee e e e e e s e eaeennneeeeaaeees 20

6.8.1 Fast Cyclic VOItaMMELrY SCANSuuuuiiiiiiiiii e 20
6.9 Chronopotentiometric Stripping (SCP) [6]....cccevviiiiiiiiiee 21
6.10 ChronoamperomMEtry (CA) [7] .. e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeaeeeeeeeseaseesesssesseseesssssnesssnssssnnes 21
6.11 Pulsed Amperometric Detection (PAD) [8]....cccoviiiiiiiiiiiieee 21
6.12 Fast Amperometry (FAM) [9]....ccoi i 21
6.13 ChronopotentioMetry (CP) [L0]uueeueiiiieiieeeieeeeeeeeeeeieeeeeeeeeeeeeeeeseeseesessseseesseesseenesseeesernne 22

6.13.1 Open Circuit Potentiometry (OCP).........uuuuuii e 22
6.14 Multiple Pulse Amperometry (MPAD) [11]..cccoiiiiiiiiiiii e, 22
6.15 Electrochemical Impedance Spectroscopy (EIS) ..., 22

B.15.1 TIME SCAM...uuuuuuiuiuiiiiiiiiiiiuieetiit s 23

6.15.2 POLENLIAI SCAN.....uuuitiiiiiiiiiiiiiiiii s 24
6.16 Recording extra values (BiPot, Aux, CE Potential...)........cccciiiiiiiiiiiiieeeeen 24

Getting started with PalmSens SDK for Python

6.17 IVIURLIDIEXET ... ettt e e ettt e e e e e e e bbbt e e e e e e e e e e nnbeaeeaaaeeas 25
6.17.1 MURIPIEXEE SEIHNGSetteeeiiieeii ittt e e e e ettt e e e e e e e e bbb e e e e e e e e e s e nnabbneeaaaaeas 26
6.18 VEISUS OCP ...ttt e et e e e e e e e e e e e e eennnaaas 26
6.19 Properties fOor EMSLA PICO.coiiiiiiiiiiiie ettt e e e e e eeeaeeeas 27
6.20 METNOAS CRIPT™ ittt ettt e et e e e s te e s e e e aeeeaeeenseesteeaneas 27
6.20.1 SANADOX MEASUIEIMENESuuiiiiiiiiiiiiiiiiiiiiie s 28

Getting started with PalmSens SDK for Python

1 Contents of the PalmSens SDK

The PalmSens SDK contains the following libraries and projects:

PalmSens.Core.dll & PalmSens.Core.Windows.BLE.dII:
These libraries contain the namespaces with all the necessary files for using
PalmSens/EmStat/Nexus/Sensit devices in your software.

PalmSens

PalmSens.Comm

= PalmSens.DataFiles

= PalmSens.Devices

= PalmSens.Techniques

= PalmSens.Units
pspython

All necessary classes and functions for performing measurements and
doing analysis with PalmSens, EmStat, Sensit or Nexus.

For Serial, USB, TCP, Bluetooth (Classic/Low Energy) communication
with instruments.

For saving and loading method and data files.

For handling communications and device capabilities.

Contains all measurement technigues.

Contains a collection of units used by these libraries.

A python wrapper for the abovementioned .NET libraries.

pspyinstruments.py

pspydata.py
pspyfiles.py
pspymethods.py

Contains the functions to scan for available instruments and the
InstrumentManager class used to control the PalmSens, EmStat,
Sensit or Nexus instruments.

Defines the measurements and curves classes

For saving/loading session and method files

Work in progress, helper functions to create methods

Getting started with PalmSens SDK for Python

1.1 Example programs

The following examples are included.

LoadSaveDataExample.py:
Shows how to load/save methods and measurements and how to inspect the data.

ManualControlExample.py:
Shows how to discover devices, establish a connection and control an instrument manually.

ManualControlExampleAsync.py:
Shows how to discover devices, establish a connection and control an instrument manually using
the asynchronous instrument manager.

MeasurementExampleCA.py:
Shows how to configure and run a chronoamperometry measurement.

MeasurementExampleCAAsync.py:
Shows how to configure and run a chronoamperometry measurement using the asynchronous
instrument manager.

MeasurementExampleCV.py:
Shows how to configure and run a cyclic voltammetry measurement.

MeasurementExampleEIS.py:
Shows how to configure and run a EIS measurement.

MeasurementExampleMethodSCRIPTSandbox.py:
Shows how to configure and run a MethodSCRIPT Sandbox measurement.

MeasurementExampleStreamToCSV.py:
Shows how to configure and run a chronoamperometry measurement and write the results to a
CSV file in real-time.

MeasurementExampleSWVversusOCP.py:
Shows how to configure and run a square wave voltammetry measurement versus OCP.

MultiplexerExample.py:
Shows how to configure and control a multiplexer and run consecutive and alternating multiplexer
measurments.

MultiChannelMeasurementExample.py:
Shows how to connect to a collection of instruments and run a chronoamperometry measurement
on all channels simultaneously.

MultiChannelMeasurementCustomLoopExample.py:
Shows how to run and configure a sequence of measurements on a collection of channels
simultaneously.

MultiChannelHWSyncExample.py.py:
Shows how to connect to a collection of instruments and run a chronopotentiometry
measurement on all channels simultaneously using hardware synchronization.

Getting started with PalmSens SDK for Python

1.2 Compatible devices and firmware

Minimum required

firmware version
EmStat 3.7
EmStat2 7.7
EmStat3 7.7
EmStat3+ 7.7
EmStat4 1.3
EmStat Go 7.7
EmStat Pico 1.5
Sensit Smart 1.5
Sensit BT 1.5
Sensit Wearable 1.5
MultiEmStat3 7.7
MultiEmStat4 1.3
PalmSens3 2.8
PalmSens4 1.7
MultiPalmSens4 1.7

Getting started with PalmSens SDK for Python

2 Using the SDK in Windows

2.1 Requirements

Python version 3.8 or newer
Python dependencies listed requirements.txt
o Either run the following command or refer to the steps in 2.2
pip -r requirements.txt
.NET Framework 4.7.2
Drivers included with PSTrace5.x, MultiTrace4.x, PSTrace Xpress or the included driver
installer

Python 3.13
Python 3.13 contains a known issue which will print errors to the output due to
threads not being disposed correctly, these errors can safely be ignored.

Exception ignored in: <function _DeleteDummyThreadOnDel._del__ at
0x000001B73AEEE5C0>

https://github.com/python/cpython/issues/130522

2.2 [Optional] Create a virtual environment in Visual Studio Code

Visual studio code in combination with the Python, Python Debugger and Pylance extensions offer an
easy command to create a virtual environment and load the python dependencies.

Press control+shift+p to open the command pallete and select the Python: Create Environment
command to create a new virtual environment.

File Edit S
>Create

@ EXPLORER

* PALMSENS SDK FOR PYTHON 5.12

Python:
Python:
Chat:
Chat:

- Mew

GitHub Is
GitHub Is

Environment... recently used &
Terminal

Prompt

User Prompt
minal (With Profile)

Cirl + At + Windows + N

ue From Cl

ue From S
ug

Ctrl + Shift + At + N
rtes

Learn the F

Venv Creates a “wenw” virtual environment in the current workspace

Conda Creates a

Getting started with PalmSens SDK for Python

Select an install python interpreter

B3 Enter interpreter path..
Python 3.13.2 64-bit ~\AppData\local\Programs\Python\Python313\python.exe Global
Python 3.12.6 64-bit

Select the requirements.txt to install the python dependencies for the pspython SDK module and
examples.

o ||

¥ requirements.xt

Getting started with PalmSens SDK for Python

3 Working with files

As of version 5 of the PalmSens SDK and PSTrace measurements and their corresponding methods
are stored in *.pssession files. Methods can be stored separately in *.psmethod files.

The PalmSens SDK is backward compatible with following filetypes:

vs potential (scan method) | Measurement vs time

Method file

.pms (before 2012)

.pmt (before 2012)

Method file

.psmethod (default)

.psmethod (default)

Data (single curve) file

.pss

Analysis curves file

sd

Multiplexer curves file

The pspyfiles script in the pspython module contains the functions needed to load and save methods

.pst

.Mux

and session files. The pspydata script contain the python classes that store the loaded data. The
pspymethods scripts contains helper functions for creating and working with methods.

3.1 Loading a method file (.psmethod)

The pspyfiles script function load_method_file can be used to load method files. This function returns a

PalmSens.Method .NET object which can be used to run a measurement.

.load_method file(

.path.join

))

(scriptDir,

Getting started with PalmSens SDK for Python

3.2 Setting up a method

The pspymethods script contains helper functions to create .NET method objects for the following
techniques:

Linear sweep voltammetry

Cyclic voltammetry

Square-wave voltammetry

Differential pulse voltammetry
Chronoamperometry

Multi-step amperometry

Open circuit potentiometry
Chronopotentiometry

Electrochemical impedance spectroscopy
Galvanostatic impedance spectroscopy

This example creates a method for a square-wave voltammetry measurement versus the open circuit
potential:

method = pspymethods.square _wave_voltammetry(
conditioning potential = 2.0,
conditioning_time =
versus_ocp_mode = 3,
versus_ocp_max_ocp_time = 1,

begin_potential = -0.5,
end_potential = 0.5,
step potential = 0.01,
amplitude = 0.08,
frequency 10,

Appendix A contains a reference to the method parameters for each technique. Parameters of a .NET
method object can be modified by adjusting these properties.

For example the frequency of a square-wave voltammetry is modified by adjusting the Frequency
property on the .NET object.

method.Frequency = 50

Getting started with PalmSens SDK for Python

To create an instance of a method without using one of the helper functions in pspymethods you need
to import the .NET class, create an instance and adjust the parameters. Appendix A lists the classes
for the techniques.

This example creates an instance of an alternating current voltammetry method.

import pspython

from PalmSens.Techniques import ACVoltammetry

= ACVoltammetry()
.BeginPotential = -.5
.EndPotential = 0.5
.StepPotential = 0.01
.SineWaveAmplitude = 0.05
.Frequency = 50

Tip

The VSCode Debug Console or another Python REPL environment will auto complete
on the properties and functions of .NET objects like the PalmSens.Method objects
returned by the helper methods.

measurement = manager.measure(method, return_dotnet_object=True) method = <PalmSens.Techniques.SquareWave object at 8x8808817FA6ADOH
print(f 'ocp: {measurement.curves[@].dotnet_curve.0CPValue}")

manager.disconnect()

Ranging.FactorMinC
CellonAfterMeasurement
equency
omMethodID
-omTechniqueNumber
get_Frequency
set_Frequency
ILTERBYTE
Powerfreq
get_PowerFreq
set PowerFreq
__format__

> method.Fr

10

Getting started with PalmSens SDK for Python

3.3 Saving a method

The pspyfiles script function save_method_file can be used to save method files.

pspyfiles.save_method file(os.path.join(scriptDir,
'PSDummyCell LSV copy.psmethod'), method)

3.4 Loading and saving data

Data from measurements can be loaded from and stored to

" . - Session File
.pssession files. This contains a session with one or more | Measurement
measurements containing its respective method and curves. Curvet
FCurveZ
The pspyfiles script function load_session_file Curved L

o . .pssession
can be used to load session files. It returns a list of -Measurement2 b

measurements, with the exception of (galvanostatic/) gﬂxgg
electrochemical impedance spectroscopy measurements Curve3

measurements contain one or more curves. The measurement L Method in editor
and curve classes are defined in the pspydata script. -

The load_session_file function contains overloads for loading equivalent circuit fit results and peaks
and an overload to keep the underlying .NET objects. Keeping the underlying .NET objects is not
necessary but useful when you need to access extra information or functionality not provided in the
python measurement and curve classes.

The following example loads a collection of measurements from a session file and saves the first
measurement to a different file, important to note is that saving to a session file requires the underlying
.NET objects to be loaded, i.e. setting return_dotnet_object to true.

measurements = pspyfiles.load_session_file(os.path.join(scriptDir, 'Demo CV
DPV EIS IS-C electrode.pssession'), load_peak_data=True, load_eis_fits=True,

return_dotnet object=True)
pspyfiles.save_session_file(os.path.join(scriptDir, 'Demo CV DPV EIS IS-C
electrode copy.pssession'), [measurements[0]])

11

Getting started with PalmSens SDK for Python

4 Connecting and Measuring

The following chapter details how to connect to a device, read data from the device, manually
controlling the potential, run measurements on the device and finally how to properly close a
connection to a device.

The pspyinstruments script in the pspython module contains all the relevant functions for discovering
and controlling instruments. The InstrumentManager and InstrumentManagerAsync class are
wrappers around our .NET libraries which make it possible to connect to and control PalmSens
instruments from python.

4.1 Connecting to a device

The following example shows how to get a list of all available devices, and how to connect to one of
the discovered devices that.

available instruments = pspyinstruments.discover_instruments()

manager = pspyinstruments.InstrumentManager()
manager.connect(available instruments[0])

Currently the pspython module supports discovering instruments connected via FTDI, serial
(usbcdc/com), and Bluetooth (classic/low energy). By default scanning with Bluetooth is disabled.
4.2 Manually controlling the device

Depending on your device’s capabilities it can be used to set a potential/current and to switch current
ranges. The potential can be set manually in potentiostatic mode and the current can be set in

galvanostatic mode. The following example show how to manually set a potential, for more examples
refer to the ManualControlExample and ManualControlExampleAsync scripts included with the SDK.

4.3 Measuring

Starting a measurement is done by sending method parameters to a PalmSens/Nexus/EmStat/Sensit
device. The InstrumentManager measure function returns a Measurement and also supports keeping
a reference to the underlying .NET object for more information please refer to Chapter 3.4.

The following example runs a chronoamperometry measurement on an instrument.

method = pspymethods.chronoamperometry(interval time=0.01, e=1.0,

run_time=10.0)
measurement = manager.measure(method)

12

Getting started with PalmSens SDK for Python

It is possible to process measurement results in real-time by specifying a callback on the
InstrumentManager/InstrumentManagerAsync either by providing it as an override when it is created
using the new_data_callback argument:

new_data_callback(new_data):
for point in new_data:
for type, value in point.items():

print(type + ' = ' + str(value))

manager =

pspyinstruments.InstrumentManager(new data callback=new data callback)
or by setting it on the InstrumentManager’s new_data_callback field.

manager.new_data callback = stream to csv_callback(csv_writer)

The callback is passed a collection of points that have been added since the last time it was called.
Points contain a dictionary with the following information:

e Non-impedimetric techniques: techniques such as linear sweep voltammetry or
chronopotentiometry return a dictionary containing the following values:
o index: the index of the point
o X X_ unlt and x_type: depending on the technique this will be:
Time in seconds for amperometry and potentiometry techniques that do not
specify a begin and an end potential
= Potential in volts for voltammetry techniques such as linear sweep, cyclic and
square-wave voltammetry
= Current in micro amperes for linear sweep potentiometry
o Y,y _unitandy type: depending on the techniques this will be:
= Current in micro amperes for all potentiometric techniques such as linear
sweep and cyclic voltammetry and chronoamperometry and multistep
amperometry
= Potential in volts for all galvanostatic techniques such as chronopotentiometry
and linear sweep potentiometry
e Impedimetric techniques: the exception are (galvanostatic/) electrochemical impedance
spectroscopy. These techniques return the following:
o frequency: the applied frequency of the sample in hertz
o z_re: the real impedance in ohms
o z_im: the imaginary impedance in ohms

Mains Frequency

To eliminate noise induced by other electrical appliances it is highly recommended to
set your regional mains frequency (50/60 Hz) in the static property
PalmSens.Method.PowerFreq.

13

Getting started with PalmSens SDK for Python

4.4 MethodSCRIPT™

The MethodSCRIPT™ scripting language is designed to integrate our OEM potentiostat (modules)
effortlessly in your hardware setup or product.

MethodSCRIPT™ allows developers to program a human-readable script directly into the potentiostat
module by means of a serial (TTL) connection. The simple script language allows for running all
supported electrochemical techniques and makes it easy to combine different measurements and
other tasks.

More script features include:
e Use of variables
(Nested) loops
Logging results to an SD card
Digital 1/0 for example for waiting for an external trigger
Reading auxiliary values like pH or temperature
Going to sleep or hibernate mode

See for more information: www.palmsens.com/methodscript

4.4.1 Sandbox Measurements

PSTrace includes an option to make use MethodSCRIPT™ Sandbox to write and run scripts. This is a
great place to test MethodSCRIPT™ measurements to see what the result would be. That script can
then be used in the MethodScriptSandbox technique in the SDK as demonstrated below.

i) Manual peak: - N - - A" == Y
st - b

L 4
L9 WL

Technique: | MS MethodSCRIPT Sandbox v n
F i~ A
Measurement @ MethodSCRIPT Editor - O x|
Notes: e _-
Click here fo add nofss... 2 file_open Emstatpm r
3 set_script_output 3 Builtwith P A0
4 var c
5 wvar p Options
Open MethodSCRIPT Editor 6 set_pgstat chan @
7 set_pgstat_mode 3

8 set_max_bandwidth 8@

9 set_range ba 21én

18 set_autoranging ba 216n 216m
11 set_e 5&8m

12 cell on

13 meas_loop_ca p c 588m S5m 5885m
14 pck_start

15 pck_add p

16 pck_add c

17 pck_end

18 endloop

19 on_finished:

28 file_close

21 cell off)
Expected duration: 0,000 s 22 %) Copy to Clipboard
23
< % E Save to file
1
Online support on Method SCRIPT Close

|'|'|
]

Connected |

14

https://www.palmsens.com/methodscript

Getting started with PalmSens SDK for Python

4.5 Disconnecting from the device

The InstrumentManager disconnect function disconnects from the device freeing it up for other things
to connect to it.

manager.disconnect()

15

Getting started with PalmSens SDK for Python

5 PalmSens.Core.dll

The basis for handling measurements is the PalmSens.Measurement class, or the
PalmSens.Core.Simplified.Data.SimpleMeasurement class when using the simplified wrapper.

The measurement class contains all classes, functions, and parameters necessary for performing a
measurement with a PalmSens or EmStat instrument. It has one method and can contain multiple
curves. Curves are a representation of the data in the measurement used for plotting and analysis.

Measurement
|
[|
Curve
Method ArrayList

— Curve 1

— Curve 2

— Curven

16

Getting started with PalmSens SDK for Python

The following diagram shows the inheritance structure of the Method classes:

Amperometric
Detection

Chrono
Amperometry

Fast
Amperometry

Fast
Potentiometry

Impedimetric
Method

TimeMethod

MultiplePulse
Amperometry

PulsedAmp
Detection

Potentiometry

MultiStep
Amperometry/
Potentiometry

acVoltammetry

Cyclic
Voltammetry

Potential
Method

LinearSweep

ScanMethod

Chrono
PotStripping

SquareWave

NormalPulse

DifferentialPulse

17

Getting started with PalmSens SDK for Python

6 Appendix A: Parameters for each technique

All applicable parameters for each technique can be found here. For the inheritance hierarchy of the
the techniques, see section 3 in this document. See section ‘Available techniques’ in the PSTrace
manual for more information about the techniques.

Each technique is identified by a specific integer value. This integer value can be used to create a
class derived from the corresponding technique, as follows:

PalmSens.Method.FromTechniqueNumber(integervalue)

The integer values are indicated in this appendix inside the brackets [] following each technique

name.

The techniques are also directly available from the PalmSens.Techniques namespace.

Please refer to the PSTrace manual for explanations and expected values for each parameter.

6.1 Common properties

measurement)

Property Description Type

Technique The technique number used in the firmware | System.Int

Notes Some user notes for use with this method System.String

StandbyPotential Standby Potential (for use with cell on after | System.Float
measurement)

StandbyTime Standby time (for use with cell on after System.Float

CellOnAfterMeasurement

Enable/disable cell after measurement

System.Boolean

MinPeakHeight

Determines the minimum peak height in pA.
Peaks lower than this value are neglected.

System.Float

MinPeakWidth

The minimum peak width, in the unit of the
curves X axis. Peaks narrower than this
value are neglected.

System.Float

SmoothLevel

The smoothlevel to be used.

-1 =none

0 = no smooth (spike rejection only)
1 = 5 points

2 =9 points

3 =15 points

4 = 25 points

System.Int

Ranging

Ranging information, settings defining the
minimum/maximum/starting current range

PalmSens.Method.Ranging

PowerFreq

Adjusts sampling on instrument to account
for mains frequency. It accepts two values:
50 for 50Hz
60 for 60Hz

System.Int

18

Getting started with PalmSens SDK for Python

6.2 Pretreatment settings

The following properties specify the measurements pretreatment settings:

Property

Description

Type

ConditioningPotential

Conditioning potential in volt

System.Float

ConditioningTime

Conditioning duration in seconds

System.Float

DepositionPotential

Deposition potential in volt

System.Float

DepositionTime

Deposition duration in seconds

System.Float

EquilibrationTime

Equilibration duration in seconds. BeginPotential is applied
during equilibration and the device switches to the appropriate
current range

System.Float

6.3 Linear Sweep Voltammetry (LSV) [0]

Class: Palmsens.Techniques.LinearSweep

Property Description Type

BeginPotential | Potential where scan starts. System.Float
EndPotential Potential where measurement stops. System.Float
StepPotential | Step potential System.Float
Scanrate The applied scan rate. The applicable range depends on the value of | System.Float

E step since the data acquisition rate is limited by the connected
instrument.

6.4 Differential Pulse Voltammetry (DPV) [1]

Class: Palmsens.Techniques.DifferentialPulse

Property Description Type

BeginPotential | Potential where scan starts. System.Float
EndPotential Potential where measurement stops. System.Float
StepPotential | Step potential System.Float
Scanrate The applied scan rate. The applicable range depends on the value of | System.Float

E step since the data acquisition rate is limited by the connected
instrument.

PulsePotential

Pulse potential

System.Float

PulseTime

The pulse time

System.Float

6.5 Square Wave Voltammetry (SWV) [2]

Class: Palmsens.Techniques.SquareWave

Property Description Type

BeginPotential Potential where scan starts. System.Float
EndPotential Potential where measurement stops. System.Float
StepPotential Step potential System.Float

PulseAmplitude

Amplitude of square wave pulse. Values are half peak-to-peak.

System.Float

Frequency

The frequency of the square wave

System.Float

19

Getting started with PalmSens SDK for Python

6.6 Normal Pulse Voltammetry (NPV) [3]

Class: Palmsens.Techniques.NormalPulse

Property Description Type
BeginPotential | Potential where scan starts. System.Float
EndPotential Potential where measurement stops. System.Float
StepPotential | Step potential System.Float
Scanrate The applied scan rate. The applicable range depends on the value of | System.Float
E step since the data acquisition rate is limited by the connected
instrument.
PulseTime The pulse time System.Float

6.7 AC Voltammetry (ACV) [4]

Class: Palmsens.Techniques.ACVoltammetry

Property Description Type

BeginPotential Potential where scan starts. System.Float
EndPotential Potential where measurement stops. System.Float
StepPotential Step potential System.Float
SineWaveAmplitude Amplitude of sine wave. Values are RMS System.Float
Frequency The frequency of the AC signal System.Float

6.8 Cyclic Voltammetry (CV) [5]

Class: Palmsens.Techniques.CyclicVoltammetry

Property Description Type
BeginPotential | Potential where scan starts and stops. System.Float
Vix1Potential | First potential where direction reverses. System.Float
Vix2Potential | Second potential where direction reverses. System.Float
StepPotential | Step potential System.Float
Scanrate The applied scan rate. The applicable range depends on the value of | System.Float
E step since the data acquisition rate is limited by the connected
instrument.
nScans The number of repetitions for this scan System.Float

6.8.1 Fast Cyclic Voltammetry Scans
Class: Palmsens.Techniques.FastCyclicVoltammetry

Outdated class. PalmSens 3 and 4 only. CV’s with sampling over 5000 data points per second, use
the regular Palmsens.Techniques.CyclicVoltammetry() constructor instead.

20

Getting started with PalmSens SDK for Python

6.9 Chronopotentiometric Stripping (SCP) [6]

Class: PalmSens.Technigues.ChronoPotStripping

Property Description Type
EndPotential Potential where measurement stops. System.Float
MeasurementTime The maximum measurement time. This value should always System.Float

exceed the required measurement time. It only limits the time
of the measurement. When the potential response is
erroneously and E end is not found within this time, the
measurement is aborted.

AppliedCurrentRange | The applied current range PalmSens.
CurrentRange
Istrip If specified as 0, the method is called chemical stripping System.Float

otherwise it is constant current stripping. The current is
expressed in the applied current range.

6.10 Chronoamperometry (CA) [7]

Class: PalImSens.Techniques.AmperometricDetection

Property Description Type

Potential Potential during measurement. System.Float
IntervalTime Time between two current samples. System.Float
RunTime Total run time of scan. System.Float

6.11 Pulsed Amperometric Detection (PAD) [8]

Class: PalImSens.Technigues.PulsedAmpDetection

Property Description Type
Potential The dc or base potential. System.Float
PulsePotentialAD | Potential in pulse. Note that this value is not relative to System.Float
dc/base potential, given above.
PulseTime The pulse time. System.Float
tMode DC: I(dc) measurement is performed at PalmSens.Techniques.
potential E PulsedAmpDetection.
pulse: I(pulse) measurement is performed at enumMode
potential E pulse
differential: I(dif) measurement is I(pulse) - 1(dc)
IntervalTime Time between two current samples. System.Float
RunTime Total run time of scan. System.Float

6.12 Fast Amperometry (FAM) [9]

Class: PaImSens.Techniques.FastAmperometry

Property Description Type

EgPotentialFA Equilibration potential at which the measurement System.Float
starts.

Potential Potential during measurement. System.Float

IntervalTimeF Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

21

Getting started with PalmSens SDK for Python

6.13 Chronopotentiometry (CP) [10]

Class: PalmSens.Techniques.Potentiometry

Property

Description

Type

Current

The current to apply. The unit of the value is the applied
current range. So if 10 uA is the applied current range and
1.5 is given as value, the applied current will be 15 uA.

System.Float

AppliedCurrentRange | The applied current range. PalmSens.

CurrentRange
RunTime Total run time of scan. System.Float
IntervalTime Time between two potential samples. System.Float
6.13.1 Open Circuit Potentiometry (OCP)

Class: PalImSens.Technigues.OpenCircuitPotentiometry

The same as setting the Current to 0.

Property Description Type
RunTime Total run time of scan. System.Float
IntervalTime Time between two potential samples. System.Float

6.14 Multiple Pulse Amperometry (MPAD) [11]

Class: PalImSens.Technigues.MultiplePulseAmperometry

Property Description Type

E1l First potential level in which the current is recorded System.Float
E2 Second applied potential level System.Float
E3 Third applied potential level System.Float
tl The duration of the first applied potential System.Float
t2 The duration of the second applied potential System.Float
t3 The duration of the third applied potential System.Float
RunTime Total run time of scan. System.Float

6.15Electrochemical Impedance Spectroscopy (EIS)

Class: PalImSens.Techniques.ImpedimetricMethod

The most common properties are described first. These are used for a typical EIS measurement, a
scan over a specified range of frequencies (i.e. using the default properties ScanType =
ImpedimetricMethod.

enumScanType.FixedPotential and FreqType =
ImpedimetricMethod.enumFrequencyType.Scan). The additional properties used for a TimeScan
and a PotentialScan are detailed separately in next sections.

Property
ScanType

Description

Scan type specifies whether a single or multiple frequency
scans are performed. When set to FixedPotential a single
scan will be performed, this is the recommended setting.
The TimeScan and PotentialScan are not fully
supported in the SDK, we highly recommend you to
implement yourself. A TimeScan performs repeated scans
at a given time interval within a specified time range. A
PotentialScan performs scans where the DC Potential of
the applied sine is incremented within a specified range. A
PotentialScan should not be performed versus the OCP.
The DC potential of the applied sine

Type
ImpedimetricMethod.
enumScanType

Potential System.Float

22

Getting started with PalmSens SDK for Python

Eac The amplitude of the applied sine in RMS (Root Mean System.Float
Square)

FreqType Frequency type specifies whether to perform a scanona | ImpedimetricMethod.
range of frequencies or to measure a single frequency. enumFrequencyType

The latter option can be used in combination with a
TimeScan or a PotentialScan.

MaxFrequency The highest frequency in the scan, also the frequency at System.Float
which the measurement is started

MinFrequency The lowest frequency in the scan System.Float
nFrequencies The number of frequencies included in the scan System.Int
SamplingTime Each measurement point of the impedance spectrum is System.Float

performed during the period specified by SamplingTime.
This means that the number of measured sine waves is
equal to SamplingTime * frequency. If this value is less
than 1 sine wave, the sampling is extended to 1 /
frequency. So for a measurement at a frequency, at least
one complete sine wave is measured.

Reasonable values for the sampling are in the range of
0.1to1ls.

MaxEqTime The impedance measurement requires a stationary state. | System.Float
This means that before the actual measurement starts,
the sine wave is applied during MaxEqTime only to reach
the stationary state.

The maximum number of equilibration sine waves is
however 5. The minimum number of equilibration sines is
set to 1, but for very low frequencies, this time is limited by
MaxEqTime. The maximum time to wait for stationary
state is determined by the value of this parameter. A
reasonable value might be 5 seconds. In this case this
parameter is only relevant when the lowest frequency is
less than 1/ 5 s s0 0.2 Hz.

6.15.1 Time Scan

In a Time Scan impedance spectroscopy measurements are repeated for a specific amount of time at
a specific interval. The SDK does not support this feature fully, we recommend you to design your own
implementation for this that suits your demands.

Property Description Type
RunTime RunTime is not the total time of the measurement, but the System.Float
time in which a measurement iteration can be started. If a
frequency scan takes 18 seconds and is measured at an
interval of 19 seconds for a RunTime of 40 seconds three
iterations will be performed.

IntervalTime IntervalTime specifies the interval at which a measurement System.Float
iteration should be performed, however if a measurement
iteration takes longer than the interval time the next
measurement will not be triggered until after it has been
completed.

23

Getting started with PalmSens SDK for Python

6.15.2

Potential Scan

In a Potential Scan impedance spectroscopy measurements are repeated over a range of DC potential
values. The SDK does not support this feature fully, we recommend you to design your own
implementation for this that suits your demands.

Property Description Type

BeginPotential The DC potential of the applied sine wave to start the series System.Float
of iterative measurements at.

EndPotential The DC potential of the applied sine wave at which the series | System.Float
of iterative measurements ends.

StepPotential The size of DC potential step to iterate with. System.Float

6.16 Recording extra values (BiPot, Aux, CE Potential...)

The PalImSens.Method.ExtraValueMsk property allows you to record an additional value during your
measurement. Not all techniques support recording extra values, the SupportsAuxIinput and
SupportsBipot properties are used to indicate whether a technique supports the recording of these
values. The default value for PalmSens.Method.ExtraValueMsk is
PalmSens.ExtraValueMask.None.

None, no extra value recorded (default)
Current
Potential

WEZ2, record BiPot readings (The behavior of the second working electrode is defined
with the method’s BipotModePS property. EnumPalmSensBipotMode.Constant sets it
to a fixed potential and EnumPalmSensBipotMode.Offset sets it to an offset of the
primary working electrode. The value in Volt of the fixed or offset potential is defined with

the method’s BiPotPotential property.)

24

Getting started with PalmSens SDK for Python

e AuxInput, similar to PSTrace it is possible to configure the readings of the auxilliary input.
Using the PalmSens.AuxInput.Auxiliarylnput class you can assign a name, offset, gain
and unit to the auxilliary input. The following example demonstrates how to set up the
Pt1000 temperature sensor from PSTrace.

Change auxiliary input ¥
Aundliary input options

Type: |Pt10D0 w~

Mame: |Pt1000

Lescnption Temperature Sensar

Offzet: |-275.0

Slope: | 1891

Temp
Symbal: | T

Add Edt ... Delete Set selected

psCommSimpleWinForms.comm.AuxInputSelected = new PalmSens.AuxInput.Auxiliar
yInputType(true, "Ptleee", "Temperature sensor", -275f, 189.1f,
new PalmSens.Units.Temperature());

The can be ignored and set to true, the second argument is the name, third is the
description, fourth the offset, fifth the slope and the final argument is an instance of one
of the unit classes in the PalmSens.Units namespace.

Reverse, record reverse current as used by Square Wave Voltammetry

PolyStatWE, not supported in the PalmSens SDK

DCcurrent, record the DC current as used with AC Voltammetry

CEPotential, PalmSens 4 only

The PSSDKBIiPotAuxExample example project demonstrates how to record extra values.

6.17 Multiplexer

The PalmSens.Method class is also used to specify the multiplexer settings for sequential and
alternating measurements. Alternating multiplexer measurements restricted to the chronoamperometry
and chronopotentiometry techniques.

The enumerator property PalmSens.Method.MuxMethod defines the type multiplexer measurement.
methodCA.MuxMethod = MuxMethod.None; //Default setting, no multiplexer

methodCA.MuxMethod = MuxMethod.Alternatingly;
methodCA.MuxMethod = MuxMethod.Sequentially;

//The channels on which to measure are specified in a boolean array
PalmSens.Method.UseMuxChannel: methodCA.UseMuxChannel = new bool[] { true, true,
false, false, false, false, false, true };

25

Getting started with PalmSens SDK for Python

The code above will perform a measurement on the first two and last channels of an 8-channel
multiplexer. For a 16-channel multiplexer you would also need to assign true or false to the last 8
channels.

Alternating multiplexer measurement can only measure on successive channels and must start with
the first channel (i.e. it is possible to alternatingly measure on channels 1 through 4 but it is not
possible to alternatingly measure on channel 1, 3 and 5). The multiplexer functionality is demonstrated
in the PSSDKMultiplexerExample project.

6.17.1 Multiplexer settings

When using a MUX8-R2 multiplexer the multiplexer settings must be set digitally instead of via the
physical switches on the earlier multiplexer models. The type of multiplexer should be specified in the
connected device’s capabilities, when the multiplexer is connected before connecting to the software
the capabilities are updated automatically. Otherwise, when using the MUX8-R2 the
PalmSens.Devices.DeviceCapabilities.MuxType should be set to
PalmSens.Comm.MuxType.Protocol manually or by calling
PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfo,
PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfoAsync when connected
asynchronously.

For the MUX8-R2 the settings for a measurement are set in PalmSens.Method.MuxSett property with
an instance of the PalmSens.Method.MuxSettings class. For manual control these settings can be
set using the PalmSens.Comm.ClientConnection.SetMuxSettings function,
PalmSens.Comm.ClientConnection.SetMuxSettingsAsync when connected asynchronously.

method.MuxSett = new Method.MuxSettings(false)
{
CommonCERE = false,
ConnSEWE = false,
ConnectCERE = true,
OCPMode = false,
SwitchBoxOn = false,
UnselWE = Method.MuxSettings.UnselWESetting.FLOAT

15
6.18Versus OCP

The versus open circuit potential settings (OCP) are defined in the PalmSens.Method.OCPmode,
PalmSens.Method.OCPMaxOCPTime, and PalmSens.Method.OCPStabilityCriterion properties.
The OCPmode is a bitmask specifies which of the following technique dependent properties or
combination thereof will be measured versus the OCP potential:

= Linear Sweep Voltammetry:
o BeginPotential = 1
o EndPotential = 2
» (Fast) Cyclic Voltammetry
o Vitx1Potential =1
o Vitx2Potential = 2
o BeginPotential = 4
» Chronoamperometry
o Potential = 1
*» Impedance Spectroscopy (Fixed potential and Time Scan)
o Potential =1
*» Impedance Spectroscopy (Potential Scan)
o BeginPotential = 1
o EndPotential = 2

The progress and result of the versus OCP measurement step are reported in the
PalmSens.Comm.MeasureVersusOCP class, which can be obtained by subscribing to the

26

Getting started with PalmSens SDK for Python

PalmSens.Comm.CommManager.DeterminingVersusOCP event which is raised when the versus
OCP measurement step is started.

//Defining versus OCP measurement step for a Cyclic Voltammetry measurement
_methodCV.0CPmode = 7; //Measure the (VtxlPotential) 1 + (Vtx2Potential) 2 +
(BeginPotential) 4 = 7 versus the OCP potential

_methodCV.0CPMaxOCPTime = 10; //Sets the maximum time the versus OCP step can take to
10 seconds

_methodCV.0CPStabilityCriterion = 0.02f; //The OCP measurement will stop when the
change in potential over time is less than ©0.02mV/s, when set to @ the OCP measurement
step will always run for the OCPMaxOCPTime

6.19 Properties for EmStat Pico

There are two method parameters specific to the EmStat Pico. The PaimSens.Method.PGStatMode
property sets the mode in which the measurement should be run, low power, high speed or max
range. This mode can be set for all techniques but Electrochemical Impedance Spectroscopy. The
second property is PalmSens.Method.SelectedPotentiostatChannel which let you choose on which
channel the EmStat Pico should run the measurement.

Mains Frequency

To eliminate noise induced by other electrical appliances it is highly recommended to
set your regional mains frequency (50/60 Hz) in the static property
PalmSens.Method.PowerFreq.

6.20MethodSCRIPT™

The MethodSCRIPT™ scripting language is designed to integrate our OEM potentiostat (modules)
effortlessly in your hardware setup or product.

MethodSCRIPT™ allows developers to program a human-readable script directly into the potentiostat
module by means of a serial (TTL) connection. The simple script language allows for running all
supported electrochemical techniques and makes it easy to combine different measurements and
other tasks.

More script features include:
e Use of variables
(Nested) loops
Logging results to an SD card
Digital I/O for example for waiting for an external trigger
Reading auxiliary values like pH or temperature
Going to sleep or hibernate mode

See for more information: www.palmsens.com/methodscript

27

https://www.palmsens.com/methodscript

Getting started with PalmSens SDK for Python

6.20.1 Sandbox Measurements

PSTrace includes an option to make use MethodSCRIPT™ Sandbox to write and run scripts. This is a
great place to test MethodSCRIPT™ measurements to see what the result would be. That script can
then be used in the MethodScriptSandbox technigue in the SDK as demonstrated below.

[new method] Manual peak: - JP: B Jﬁ f . .;_,.V,\ EI + 5‘1 \
Technique: | MS MethodSCRIPT Sandbox v
F l}_\'?‘ selected cu =
Measurement @D MethodSCRIPT Editar - O ¥ E
Note?: e |
Click here fo 50 nofes... 2 file_open "/Measurements/2B-87-2021/CA-18-52- EmStatp:'CO
3 set_script_output 3 Buiitwith) ANALSS
4 var c
5var p Options
Open MethodSCRIPT Editor 6 set_pgstat_chan @
7 set_pgstat_mode 3

8 set_max_bandwidth 2388

9 set_range ba 21@n

18 set_autoranging ba 21én 218m
11 set_e 566m

12 cell on

13 meas_loop_ca p c 588m 5m 58@5m
14 pck_start

15 pck_add p

16 pck_add ¢

17 pck_end

18 endloop

19 e¢n_finished:

28 file_close

21 cell off)
Expected duration: 0,000 s 22) Copy to Clipboard
23
< = E Save to file
1
Online support on MethodSCRIPT Close
|

Connected | E= T

28

