

Getting started with PalmSens SDK
for Python

Based on PalmSens SDK v5.12

Last revision: April 24, 2025
© 2025 PalmSens BV
www.palmsens.com

 1

Getting started with PalmSens SDK for Python

Contents
1 Contents of the PalmSens SDK ..3

1.1 Example programs ..4

1.2 Compatible devices and firmware ..5

2 Using the SDK in Windows...6

2.1 Requirements ...6

2.2 [Optional] Create a virtual environment in Visual Studio Code ...6

3 Working with files ...8

3.1 Loading a method file (.psmethod) ..8

3.2 Setting up a method ..9

3.3 Saving a method ... 11

3.4 Loading and saving data ... 11

4 Connecting and Measuring... 12

4.1 Connecting to a device .. 12

4.2 Manually controlling the device.. 12

4.3 Measuring ... 12

4.4 MethodSCRIPTTM ... 14

4.4.1 Sandbox Measurements .. 14

4.5 Disconnecting from the device... 15

5 PalmSens.Core.dll ... 16

6 Appendix A: Parameters for each technique ... 18

6.1 Common properties... 18

6.2 Pretreatment settings .. 19

6.3 Linear Sweep Voltammetry (LSV) [0] ... 19

6.4 Differential Pulse Voltammetry (DPV) [1] ... 19

6.5 Square Wave Voltammetry (SWV) [2].. 19

6.6 Normal Pulse Voltammetry (NPV) [3]... 20

6.7 AC Voltammetry (ACV) [4]... 20

6.8 Cyclic Voltammetry (CV) [5] .. 20

6.8.1 Fast Cyclic Voltammetry Scans .. 20

6.9 Chronopotentiometric Stripping (SCP) [6] .. 21

6.10 Chronoamperometry (CA) [7] ... 21

6.11 Pulsed Amperometric Detection (PAD) [8].. 21

6.12 Fast Amperometry (FAM) [9] .. 21

6.13 Chronopotentiometry (CP) [10] .. 22

6.13.1 Open Circuit Potentiometry (OCP) .. 22

6.14 Multiple Pulse Amperometry (MPAD) [11] .. 22

6.15 Electrochemical Impedance Spectroscopy (EIS) .. 22

6.15.1 Time Scan.. 23

6.15.2 Potential Scan .. 24

6.16 Recording extra values (BiPot, Aux, CE Potential…) .. 24

2

Getting started with PalmSens SDK for Python

6.17 Multiplexer ... 25

6.17.1 Multiplexer settings .. 26

6.18 Versus OCP .. 26

6.19 Properties for EmStat Pico ... 27

6.20 MethodSCRIPTTM .. 27

6.20.1 Sandbox Measurements .. 28

 3

Getting started with PalmSens SDK for Python

1 Contents of the PalmSens SDK

The PalmSens SDK contains the following libraries and projects:

PalmSens.Core.dll & PalmSens.Core.Windows.BLE.dll:
These libraries contain the namespaces with all the necessary files for using
PalmSens/EmStat/Nexus/Sensit devices in your software.

▪ PalmSens All necessary classes and functions for performing measurements and
 doing analysis with PalmSens, EmStat, Sensit or Nexus.
▪ PalmSens.Comm For Serial, USB, TCP, Bluetooth (Classic/Low Energy) communication

 with instruments.
▪ PalmSens.DataFiles For saving and loading method and data files.
▪ PalmSens.Devices For handling communications and device capabilities.
▪ PalmSens.Techniques Contains all measurement techniques.
▪ PalmSens.Units Contains a collection of units used by these libraries.

pspython
A python wrapper for the abovementioned .NET libraries.

▪ pspyinstruments.py Contains the functions to scan for available instruments and the
 InstrumentManager class used to control the PalmSens, EmStat,
 Sensit or Nexus instruments.

▪ pspydata.py Defines the measurements and curves classes
▪ pspyfiles.py For saving/loading session and method files
▪ pspymethods.py Work in progress, helper functions to create methods

4

Getting started with PalmSens SDK for Python

1.1 Example programs

The following examples are included.

LoadSaveDataExample.py:

Shows how to load/save methods and measurements and how to inspect the data.

ManualControlExample.py:

Shows how to discover devices, establish a connection and control an instrument manually.

ManualControlExampleAsync.py:

Shows how to discover devices, establish a connection and control an instrument manually using
the asynchronous instrument manager.

MeasurementExampleCA.py:

Shows how to configure and run a chronoamperometry measurement.

MeasurementExampleCAAsync.py:

Shows how to configure and run a chronoamperometry measurement using the asynchronous
instrument manager.

MeasurementExampleCV.py:
Shows how to configure and run a cyclic voltammetry measurement.

MeasurementExampleEIS.py:
Shows how to configure and run a EIS measurement.

MeasurementExampleMethodSCRIPTSandbox.py:
Shows how to configure and run a MethodSCRIPT Sandbox measurement.

MeasurementExampleStreamToCSV.py:
Shows how to configure and run a chronoamperometry measurement and write the results to a
CSV file in real-time.

MeasurementExampleSWVversusOCP.py:
Shows how to configure and run a square wave voltammetry measurement versus OCP.

MultiplexerExample.py:
Shows how to configure and control a multiplexer and run consecutive and alternating multiplexer
measurments.

MultiChannelMeasurementExample.py:
Shows how to connect to a collection of instruments and run a chronoamperometry measurement
on all channels simultaneously.

MultiChannelMeasurementCustomLoopExample.py:
Shows how to run and configure a sequence of measurements on a collection of channels
simultaneously.

MultiChannelHWSyncExample.py.py:

Shows how to connect to a collection of instruments and run a chronopotentiometry
measurement on all channels simultaneously using hardware synchronization.

 5

Getting started with PalmSens SDK for Python

1.2 Compatible devices and firmware
 Minimum required

firmware version

EmStat 3.7

EmStat2 7.7

EmStat3 7.7

EmStat3+ 7.7

EmStat4 1.3

EmStat Go 7.7

EmStat Pico 1.5

Sensit Smart 1.5

Sensit BT 1.5

Sensit Wearable 1.5

MultiEmStat3 7.7

MultiEmStat4 1.3

PalmSens3 2.8

PalmSens4 1.7

MultiPalmSens4 1.7

6

Getting started with PalmSens SDK for Python

2 Using the SDK in Windows

2.1 Requirements

• Python version 3.8 or newer

• Python dependencies listed requirements.txt
o Either run the following command or refer to the steps in 2.2

pip -r requirements.txt

• .NET Framework 4.7.2

• Drivers included with PSTrace5.x, MultiTrace4.x, PSTrace Xpress or the included driver
installer

2.2 [Optional] Create a virtual environment in Visual Studio Code

Visual studio code in combination with the Python, Python Debugger and Pylance extensions offer an
easy command to create a virtual environment and load the python dependencies.

Press control+shift+p to open the command pallete and select the Python: Create Environment
command to create a new virtual environment.

Select the Venv option

Python 3.13
Python 3.13 contains a known issue which will print errors to the output due to
threads not being disposed correctly, these errors can safely be ignored.

Exception ignored in: <function _DeleteDummyThreadOnDel.__del__ at
0x000001B73AEEE5C0>

https://github.com/python/cpython/issues/130522

 7

Getting started with PalmSens SDK for Python

Select an install python interpreter

Select the requirements.txt to install the python dependencies for the pspython SDK module and
examples.

8

Getting started with PalmSens SDK for Python

3 Working with files

As of version 5 of the PalmSens SDK and PSTrace measurements and their corresponding methods
are stored in *.pssession files. Methods can be stored separately in *.psmethod files.

The PalmSens SDK is backward compatible with following filetypes:

 vs potential (scan method) Measurement vs time

Method file .pms (before 2012) .pmt (before 2012)

Method file .psmethod (default) .psmethod (default)

Data (single curve) file .pss .pst

Analysis curves file .psd

Multiplexer curves file .mux

The pspyfiles script in the pspython module contains the functions needed to load and save methods
and session files. The pspydata script contain the python classes that store the loaded data. The
pspymethods scripts contains helper functions for creating and working with methods.

3.1 Loading a method file (.psmethod)

The pspyfiles script function load_method_file can be used to load method files. This function returns a
PalmSens.Method .NET object which can be used to run a measurement.

method = pspyfiles.load_method_file(os.path.join(scriptDir,

'PSDummyCell_LSV.psmethod'))

 9

Getting started with PalmSens SDK for Python

3.2 Setting up a method

The pspymethods script contains helper functions to create .NET method objects for the following
techniques:

• Linear sweep voltammetry

• Cyclic voltammetry

• Square-wave voltammetry

• Differential pulse voltammetry

• Chronoamperometry

• Multi-step amperometry

• Open circuit potentiometry

• Chronopotentiometry

• Electrochemical impedance spectroscopy

• Galvanostatic impedance spectroscopy

This example creates a method for a square-wave voltammetry measurement versus the open circuit
potential:

method = pspymethods.square_wave_voltammetry(

 conditioning_potential = 2.0, # V

 conditioning_time = 2, # seconds

 versus_ocp_mode = 3, # versus begin and end potential

 versus_ocp_max_ocp_time = 1, # seconds

 begin_potential = -0.5, # V

 end_potential = 0.5, # V

 step_potential = 0.01, # V

 amplitude = 0.08, # V

 frequency = 10, # Hz

)

Appendix A contains a reference to the method parameters for each technique. Parameters of a .NET
method object can be modified by adjusting these properties.

For example the frequency of a square-wave voltammetry is modified by adjusting the Frequency
property on the .NET object.

method.Frequency = 50

10

Getting started with PalmSens SDK for Python

To create an instance of a method without using one of the helper functions in pspymethods you need
to import the .NET class, create an instance and adjust the parameters. Appendix A lists the classes
for the techniques.

This example creates an instance of an alternating current voltammetry method.

import pspython

import the alternating current voltammetry method object

from PalmSens.Techniques import ACVoltammetry

create a new method object

method = ACVoltammetry()

method.BeginPotential = -.5 # volts

method.EndPotential = 0.5 # volts

method.StepPotential = 0.01 # volts

method.SineWaveAmplitude = 0.05 # volts RMS

method.Frequency = 50 # Hz

Tip
The VSCode Debug Console or another Python REPL environment will auto complete
on the properties and functions of .NET objects like the PalmSens.Method objects
returned by the helper methods.

 11

Getting started with PalmSens SDK for Python

3.3 Saving a method

The pspyfiles script function save_method_file can be used to save method files.

pspyfiles.save_method_file(os.path.join(scriptDir,

'PSDummyCell_LSV_copy.psmethod'), method)

3.4 Loading and saving data

Data from measurements can be loaded from and stored to
*.pssession files. This contains a session with one or more
measurements containing its respective method and curves.

The pspyfiles script function load_session_file
can be used to load session files. It returns a list of
measurements, with the exception of (galvanostatic/)
electrochemical impedance spectroscopy measurements
measurements contain one or more curves. The measurement
and curve classes are defined in the pspydata script.

The load_session_file function contains overloads for loading equivalent circuit fit results and peaks
and an overload to keep the underlying .NET objects. Keeping the underlying .NET objects is not
necessary but useful when you need to access extra information or functionality not provided in the
python measurement and curve classes.

The following example loads a collection of measurements from a session file and saves the first
measurement to a different file, important to note is that saving to a session file requires the underlying
.NET objects to be loaded, i.e. setting return_dotnet_object to true.

measurements = pspyfiles.load_session_file(os.path.join(scriptDir, 'Demo CV

DPV EIS IS-C electrode.pssession'), load_peak_data=True, load_eis_fits=True,

return_dotnet_object=True)

pspyfiles.save_session_file(os.path.join(scriptDir, 'Demo CV DPV EIS IS-C

electrode_copy.pssession'), [measurements[0]])

12

Getting started with PalmSens SDK for Python

4 Connecting and Measuring

The following chapter details how to connect to a device, read data from the device, manually
controlling the potential, run measurements on the device and finally how to properly close a
connection to a device.

The pspyinstruments script in the pspython module contains all the relevant functions for discovering
and controlling instruments. The InstrumentManager and InstrumentManagerAsync class are
wrappers around our .NET libraries which make it possible to connect to and control PalmSens
instruments from python.

4.1 Connecting to a device

The following example shows how to get a list of all available devices, and how to connect to one of
the discovered devices that.

available_instruments = pspyinstruments.discover_instruments()

manager = pspyinstruments.InstrumentManager()

manager.connect(available_instruments[0])

Currently the pspython module supports discovering instruments connected via FTDI, serial
(usbcdc/com), and Bluetooth (classic/low energy). By default scanning with Bluetooth is disabled.

4.2 Manually controlling the device

Depending on your device’s capabilities it can be used to set a potential/current and to switch current
ranges. The potential can be set manually in potentiostatic mode and the current can be set in
galvanostatic mode. The following example show how to manually set a potential, for more examples
refer to the ManualControlExample and ManualControlExampleAsync scripts included with the SDK.

manager.set_potential(1)

4.3 Measuring

Starting a measurement is done by sending method parameters to a PalmSens/Nexus/EmStat/Sensit
device. The InstrumentManager measure function returns a Measurement and also supports keeping
a reference to the underlying .NET object for more information please refer to Chapter 3.4.

The following example runs a chronoamperometry measurement on an instrument.

method = pspymethods.chronoamperometry(interval_time=0.01, e=1.0,

run_time=10.0)

measurement = manager.measure(method)

 13

Getting started with PalmSens SDK for Python

It is possible to process measurement results in real-time by specifying a callback on the
InstrumentManager/InstrumentManagerAsync either by providing it as an override when it is created
using the new_data_callback argument:

def new_data_callback(new_data):

 for point in new_data:

 for type, value in point.items():

 print(type + ' = ' + str(value))

manager =

pspyinstruments.InstrumentManager(new_data_callback=new_data_callback)
or by setting it on the InstrumentManager’s new_data_callback field.

manager.new_data_callback = stream_to_csv_callback(csv_writer)

The callback is passed a collection of points that have been added since the last time it was called.
Points contain a dictionary with the following information:

• Non-impedimetric techniques: techniques such as linear sweep voltammetry or
chronopotentiometry return a dictionary containing the following values:

o index: the index of the point
o x, x_unit and x_type: depending on the technique this will be:

▪ Time in seconds for amperometry and potentiometry techniques that do not
specify a begin and an end potential

▪ Potential in volts for voltammetry techniques such as linear sweep, cyclic and
square-wave voltammetry

▪ Current in micro amperes for linear sweep potentiometry
o y, y_unit and y_type: depending on the techniques this will be:

▪ Current in micro amperes for all potentiometric techniques such as linear
sweep and cyclic voltammetry and chronoamperometry and multistep
amperometry

▪ Potential in volts for all galvanostatic techniques such as chronopotentiometry
and linear sweep potentiometry

• Impedimetric techniques: the exception are (galvanostatic/) electrochemical impedance
spectroscopy. These techniques return the following:

o frequency: the applied frequency of the sample in hertz
o z_re: the real impedance in ohms
o z_im: the imaginary impedance in ohms

Mains Frequency
To eliminate noise induced by other electrical appliances it is highly recommended to
set your regional mains frequency (50/60 Hz) in the static property
PalmSens.Method.PowerFreq.

14

Getting started with PalmSens SDK for Python

4.4 MethodSCRIPTTM

The MethodSCRIPTTM scripting language is designed to integrate our OEM potentiostat (modules)
effortlessly in your hardware setup or product.

MethodSCRIPTTM allows developers to program a human-readable script directly into the potentiostat
module by means of a serial (TTL) connection. The simple script language allows for running all
supported electrochemical techniques and makes it easy to combine different measurements and
other tasks.

More script features include:

• Use of variables

• (Nested) loops

• Logging results to an SD card

• Digital I/O for example for waiting for an external trigger

• Reading auxiliary values like pH or temperature

• Going to sleep or hibernate mode

See for more information: www.palmsens.com/methodscript

4.4.1 Sandbox Measurements
PSTrace includes an option to make use MethodSCRIPTTM Sandbox to write and run scripts. This is a
great place to test MethodSCRIPTTM measurements to see what the result would be. That script can
then be used in the MethodScriptSandbox technique in the SDK as demonstrated below.

https://www.palmsens.com/methodscript

 15

Getting started with PalmSens SDK for Python

4.5 Disconnecting from the device

The InstrumentManager disconnect function disconnects from the device freeing it up for other things
to connect to it.

manager.disconnect()

16

Getting started with PalmSens SDK for Python

Measurement

Method
Curve

ArrayList

Curve 1

Curve 2

Curve n

5 PalmSens.Core.dll

The basis for handling measurements is the PalmSens.Measurement class, or the
PalmSens.Core.Simplified.Data.SimpleMeasurement class when using the simplified wrapper.

The measurement class contains all classes, functions, and parameters necessary for performing a
measurement with a PalmSens or EmStat instrument. It has one method and can contain multiple
curves. Curves are a representation of the data in the measurement used for plotting and analysis.

 17

Getting started with PalmSens SDK for Python

The following diagram shows the inheritance structure of the Method classes:

Method

TimeMethod

Amperometric
Detection

Chrono
Amperometry

Fast
Amperometry

Fast
Potentiometry

Impedimetric
Method

MultiplePulse
Amperometry

PulsedAmp
Detection

Potentiometry

MultiStep
Amperometry/
Potentiometry

ScanMethod

Potential
Method

acVoltammetry

Cyclic
Voltammetry

LinearSweep

Pulse

NormalPulse

DifferentialPulse

SquareWave

Chrono
PotStripping

18

Getting started with PalmSens SDK for Python

6 Appendix A: Parameters for each technique

All applicable parameters for each technique can be found here. For the inheritance hierarchy of the
the techniques, see section 3 in this document. See section ‘Available techniques’ in the PSTrace
manual for more information about the techniques.

Each technique is identified by a specific integer value. This integer value can be used to create a
class derived from the corresponding technique, as follows:

PalmSens.Method.FromTechniqueNumber(integervalue)

The integer values are indicated in this appendix inside the brackets [] following each technique
name.

The techniques are also directly available from the PalmSens.Techniques namespace.

Please refer to the PSTrace manual for explanations and expected values for each parameter.

6.1 Common properties

Property Description Type

Technique The technique number used in the firmware System.Int

Notes Some user notes for use with this method System.String

StandbyPotential Standby Potential (for use with cell on after
measurement)

System.Float

StandbyTime Standby time (for use with cell on after
measurement)

System.Float

CellOnAfterMeasurement Enable/disable cell after measurement System.Boolean

MinPeakHeight Determines the minimum peak height in µA.
Peaks lower than this value are neglected.

System.Float

MinPeakWidth The minimum peak width, in the unit of the
curves X axis. Peaks narrower than this
value are neglected.

System.Float

SmoothLevel The smoothlevel to be used.
-1 = none
0 = no smooth (spike rejection only)
1 = 5 points
2 = 9 points
3 = 15 points
4 = 25 points

System.Int

Ranging Ranging information, settings defining the
minimum/maximum/starting current range

PalmSens.Method.Ranging

PowerFreq Adjusts sampling on instrument to account
for mains frequency. It accepts two values:
50 for 50Hz
60 for 60Hz

System.Int

 19

Getting started with PalmSens SDK for Python

6.2 Pretreatment settings

The following properties specify the measurements pretreatment settings:

Property Description Type

ConditioningPotential Conditioning potential in volt System.Float

ConditioningTime Conditioning duration in seconds System.Float

DepositionPotential Deposition potential in volt System.Float

DepositionTime Deposition duration in seconds System.Float

EquilibrationTime Equilibration duration in seconds. BeginPotential is applied
during equilibration and the device switches to the appropriate
current range

System.Float

6.3 Linear Sweep Voltammetry (LSV) [0]

Class: Palmsens.Techniques.LinearSweep

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value of
E step since the data acquisition rate is limited by the connected
instrument.

System.Float

6.4 Differential Pulse Voltammetry (DPV) [1]

Class: Palmsens.Techniques.DifferentialPulse

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value of
E step since the data acquisition rate is limited by the connected
instrument.

System.Float

PulsePotential Pulse potential System.Float

PulseTime The pulse time System.Float

6.5 Square Wave Voltammetry (SWV) [2]

Class: Palmsens.Techniques.SquareWave

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

PulseAmplitude Amplitude of square wave pulse. Values are half peak-to-peak. System.Float

Frequency The frequency of the square wave System.Float

20

Getting started with PalmSens SDK for Python

6.6 Normal Pulse Voltammetry (NPV) [3]

Class: Palmsens.Techniques.NormalPulse

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value of
E step since the data acquisition rate is limited by the connected
instrument.

System.Float

PulseTime The pulse time System.Float

6.7 AC Voltammetry (ACV) [4]

Class: Palmsens.Techniques.ACVoltammetry

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

SineWaveAmplitude Amplitude of sine wave. Values are RMS System.Float

Frequency The frequency of the AC signal System.Float

6.8 Cyclic Voltammetry (CV) [5]

Class: Palmsens.Techniques.CyclicVoltammetry

Property Description Type

BeginPotential Potential where scan starts and stops. System.Float

Vtx1Potential First potential where direction reverses. System.Float

Vtx2Potential Second potential where direction reverses. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value of
E step since the data acquisition rate is limited by the connected
instrument.

System.Float

nScans The number of repetitions for this scan System.Float

6.8.1 Fast Cyclic Voltammetry Scans
Class: Palmsens.Techniques.FastCyclicVoltammetry

Outdated class. PalmSens 3 and 4 only. CV’s with sampling over 5000 data points per second, use
the regular Palmsens.Techniques.CyclicVoltammetry() constructor instead.

 21

Getting started with PalmSens SDK for Python

6.9 Chronopotentiometric Stripping (SCP) [6]

Class: PalmSens.Techniques.ChronoPotStripping

Property Description Type

EndPotential Potential where measurement stops. System.Float

MeasurementTime The maximum measurement time. This value should always
exceed the required measurement time. It only limits the time
of the measurement. When the potential response is
erroneously and E end is not found within this time, the
measurement is aborted.

System.Float

AppliedCurrentRange The applied current range PalmSens.
CurrentRange

Istrip If specified as 0, the method is called chemical stripping
otherwise it is constant current stripping. The current is
expressed in the applied current range.

System.Float

6.10 Chronoamperometry (CA) [7]

Class: PalmSens.Techniques.AmperometricDetection

Property Description Type

Potential Potential during measurement. System.Float

IntervalTime Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

6.11 Pulsed Amperometric Detection (PAD) [8]

Class: PalmSens.Techniques.PulsedAmpDetection

Property Description Type

Potential The dc or base potential. System.Float

PulsePotentialAD Potential in pulse. Note that this value is not relative to
dc/base potential, given above.

System.Float

PulseTime The pulse time. System.Float

tMode DC: I(dc) measurement is performed at
potential E
pulse: I(pulse) measurement is performed at
 potential E pulse
differential: I(dif) measurement is I(pulse) - I(dc)

PalmSens.Techniques.
PulsedAmpDetection.
enumMode

IntervalTime Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

6.12 Fast Amperometry (FAM) [9]

Class: PalmSens.Techniques.FastAmperometry

Property Description Type

EqPotentialFA Equilibration potential at which the measurement
starts.

System.Float

Potential Potential during measurement. System.Float

IntervalTimeF Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

22

Getting started with PalmSens SDK for Python

6.13 Chronopotentiometry (CP) [10]

Class: PalmSens.Techniques.Potentiometry

Property Description Type

Current The current to apply. The unit of the value is the applied
current range. So if 10 uA is the applied current range and
1.5 is given as value, the applied current will be 15 uA.

System.Float

AppliedCurrentRange The applied current range. PalmSens.
CurrentRange

RunTime Total run time of scan. System.Float

IntervalTime Time between two potential samples. System.Float

6.13.1 Open Circuit Potentiometry (OCP)
Class: PalmSens.Techniques.OpenCircuitPotentiometry

The same as setting the Current to 0.

Property Description Type

RunTime Total run time of scan. System.Float

IntervalTime Time between two potential samples. System.Float

6.14 Multiple Pulse Amperometry (MPAD) [11]

Class: PalmSens.Techniques.MultiplePulseAmperometry

Property Description Type

E1 First potential level in which the current is recorded System.Float

E2 Second applied potential level System.Float

E3 Third applied potential level System.Float

t1 The duration of the first applied potential System.Float

t2 The duration of the second applied potential System.Float

t3 The duration of the third applied potential System.Float

RunTime Total run time of scan. System.Float

6.15 Electrochemical Impedance Spectroscopy (EIS)

Class: PalmSens.Techniques.ImpedimetricMethod

The most common properties are described first. These are used for a typical EIS measurement, a
scan over a specified range of frequencies (i.e. using the default properties ScanType =
ImpedimetricMethod.
enumScanType.FixedPotential and FreqType =
ImpedimetricMethod.enumFrequencyType.Scan). The additional properties used for a TimeScan
and a PotentialScan are detailed separately in next sections.

Property Description Type

ScanType Scan type specifies whether a single or multiple frequency
scans are performed. When set to FixedPotential a single
scan will be performed, this is the recommended setting.
The TimeScan and PotentialScan are not fully
supported in the SDK, we highly recommend you to
implement yourself. A TimeScan performs repeated scans
at a given time interval within a specified time range. A
PotentialScan performs scans where the DC Potential of
the applied sine is incremented within a specified range. A
PotentialScan should not be performed versus the OCP.

ImpedimetricMethod.
enumScanType

Potential The DC potential of the applied sine System.Float

 23

Getting started with PalmSens SDK for Python

Eac The amplitude of the applied sine in RMS (Root Mean
Square)

System.Float

FreqType Frequency type specifies whether to perform a scan on a
range of frequencies or to measure a single frequency.
The latter option can be used in combination with a
TimeScan or a PotentialScan.

ImpedimetricMethod.
enumFrequencyType

MaxFrequency The highest frequency in the scan, also the frequency at
which the measurement is started

System.Float

MinFrequency The lowest frequency in the scan System.Float

nFrequencies The number of frequencies included in the scan System.Int

SamplingTime Each measurement point of the impedance spectrum is
performed during the period specified by SamplingTime.
This means that the number of measured sine waves is
equal to SamplingTime * frequency. If this value is less
than 1 sine wave, the sampling is extended to 1 /
frequency. So for a measurement at a frequency, at least
one complete sine wave is measured.

Reasonable values for the sampling are in the range of
0.1 to 1 s.

System.Float

MaxEqTime The impedance measurement requires a stationary state.
This means that before the actual measurement starts,
the sine wave is applied during MaxEqTime only to reach
the stationary state.

The maximum number of equilibration sine waves is
however 5. The minimum number of equilibration sines is
set to 1, but for very low frequencies, this time is limited by
MaxEqTime. The maximum time to wait for stationary
state is determined by the value of this parameter. A
reasonable value might be 5 seconds. In this case this
parameter is only relevant when the lowest frequency is
less than 1/ 5 s so 0.2 Hz.

System.Float

6.15.1 Time Scan

In a Time Scan impedance spectroscopy measurements are repeated for a specific amount of time at
a specific interval. The SDK does not support this feature fully, we recommend you to design your own
implementation for this that suits your demands.

Property Description Type

RunTime RunTime is not the total time of the measurement, but the
time in which a measurement iteration can be started. If a
frequency scan takes 18 seconds and is measured at an
interval of 19 seconds for a RunTime of 40 seconds three
iterations will be performed.

System.Float

IntervalTime IntervalTime specifies the interval at which a measurement
iteration should be performed, however if a measurement
iteration takes longer than the interval time the next
measurement will not be triggered until after it has been
completed.

System.Float

24

Getting started with PalmSens SDK for Python

6.15.2 Potential Scan

In a Potential Scan impedance spectroscopy measurements are repeated over a range of DC potential
values. The SDK does not support this feature fully, we recommend you to design your own
implementation for this that suits your demands.

Property Description Type

BeginPotential The DC potential of the applied sine wave to start the series
of iterative measurements at.

System.Float

EndPotential The DC potential of the applied sine wave at which the series
of iterative measurements ends.

System.Float

StepPotential The size of DC potential step to iterate with. System.Float

6.16 Recording extra values (BiPot, Aux, CE Potential…)

The PalmSens.Method.ExtraValueMsk property allows you to record an additional value during your
measurement. Not all techniques support recording extra values, the SupportsAuxInput and
SupportsBipot properties are used to indicate whether a technique supports the recording of these
values. The default value for PalmSens.Method.ExtraValueMsk is
PalmSens.ExtraValueMask.None.

• None, no extra value recorded (default)

• Current

• Potential

• WE2, record BiPot readings (The behavior of the second working electrode is defined
with the method’s BipotModePS property. EnumPalmSensBipotMode.Constant sets it
to a fixed potential and EnumPalmSensBipotMode.Offset sets it to an offset of the
primary working electrode. The value in Volt of the fixed or offset potential is defined with
the method’s BiPotPotential property.)

 25

Getting started with PalmSens SDK for Python

• AuxInput, similar to PSTrace it is possible to configure the readings of the auxilliary input.

Using the PalmSens.AuxInput.AuxiliaryInput class you can assign a name, offset, gain

and unit to the auxilliary input. The following example demonstrates how to set up the

Pt1000 temperature sensor from PSTrace.

psCommSimpleWinForms.comm.AuxInputSelected = new PalmSens.AuxInput.Auxiliar

yInputType(true, "Pt1000", "Temperature sensor", -275f, 189.1f,

 new PalmSens.Units.Temperature());

The can be ignored and set to true, the second argument is the name, third is the
description, fourth the offset, fifth the slope and the final argument is an instance of one
of the unit classes in the PalmSens.Units namespace.

• Reverse, record reverse current as used by Square Wave Voltammetry

• PolyStatWE, not supported in the PalmSens SDK

• DCcurrent, record the DC current as used with AC Voltammetry

• CEPotential, PalmSens 4 only

The PSSDKBiPotAuxExample example project demonstrates how to record extra values.

6.17 Multiplexer

The PalmSens.Method class is also used to specify the multiplexer settings for sequential and
alternating measurements. Alternating multiplexer measurements restricted to the chronoamperometry
and chronopotentiometry techniques.

The enumerator property PalmSens.Method.MuxMethod defines the type multiplexer measurement.

methodCA.MuxMethod = MuxMethod.None; //Default setting, no multiplexer
methodCA.MuxMethod = MuxMethod.Alternatingly;
methodCA.MuxMethod = MuxMethod.Sequentially;

//The channels on which to measure are specified in a boolean array
PalmSens.Method.UseMuxChannel: methodCA.UseMuxChannel = new bool[] { true, true,
false, false, false, false, false, true };

26

Getting started with PalmSens SDK for Python

The code above will perform a measurement on the first two and last channels of an 8-channel
multiplexer. For a 16-channel multiplexer you would also need to assign true or false to the last 8
channels.

Alternating multiplexer measurement can only measure on successive channels and must start with
the first channel (i.e. it is possible to alternatingly measure on channels 1 through 4 but it is not
possible to alternatingly measure on channel 1, 3 and 5). The multiplexer functionality is demonstrated
in the PSSDKMultiplexerExample project.

6.17.1 Multiplexer settings
When using a MUX8-R2 multiplexer the multiplexer settings must be set digitally instead of via the
physical switches on the earlier multiplexer models. The type of multiplexer should be specified in the
connected device’s capabilities, when the multiplexer is connected before connecting to the software
the capabilities are updated automatically. Otherwise, when using the MUX8-R2 the
PalmSens.Devices.DeviceCapabilities.MuxType should be set to
PalmSens.Comm.MuxType.Protocol manually or by calling
PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfo,
PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfoAsync when connected
asynchronously.

For the MUX8-R2 the settings for a measurement are set in PalmSens.Method.MuxSett property with
an instance of the PalmSens.Method.MuxSettings class. For manual control these settings can be
set using the PalmSens.Comm.ClientConnection.SetMuxSettings function,
PalmSens.Comm.ClientConnection.SetMuxSettingsAsync when connected asynchronously.

method.MuxSett = new Method.MuxSettings(false)
{

CommonCERE = false,
ConnSEWE = false,
ConnectCERE = true,
OCPMode = false,
SwitchBoxOn = false,
UnselWE = Method.MuxSettings.UnselWESetting.FLOAT

};

6.18 Versus OCP

The versus open circuit potential settings (OCP) are defined in the PalmSens.Method.OCPmode,
PalmSens.Method.OCPMaxOCPTime, and PalmSens.Method.OCPStabilityCriterion properties.
The OCPmode is a bitmask specifies which of the following technique dependent properties or
combination thereof will be measured versus the OCP potential:

▪ Linear Sweep Voltammetry:
o BeginPotential = 1
o EndPotential = 2

▪ (Fast) Cyclic Voltammetry
o Vtx1Potential = 1
o Vtx2Potential = 2
o BeginPotential = 4

▪ Chronoamperometry
o Potential = 1

▪ Impedance Spectroscopy (Fixed potential and Time Scan)
o Potential = 1

▪ Impedance Spectroscopy (Potential Scan)
o BeginPotential = 1
o EndPotential = 2

The progress and result of the versus OCP measurement step are reported in the
PalmSens.Comm.MeasureVersusOCP class, which can be obtained by subscribing to the

 27

Getting started with PalmSens SDK for Python

PalmSens.Comm.CommManager.DeterminingVersusOCP event which is raised when the versus
OCP measurement step is started.

//Defining versus OCP measurement step for a Cyclic Voltammetry measurement
_methodCV.OCPmode = 7; //Measure the (Vtx1Potential) 1 + (Vtx2Potential) 2 +
(BeginPotential) 4 = 7 versus the OCP potential
_methodCV.OCPMaxOCPTime = 10; //Sets the maximum time the versus OCP step can take to
10 seconds
_methodCV.OCPStabilityCriterion = 0.02f; //The OCP measurement will stop when the
change in potential over time is less than 0.02mV/s, when set to 0 the OCP measurement
step will always run for the OCPMaxOCPTime

6.19 Properties for EmStat Pico

There are two method parameters specific to the EmStat Pico. The PalmSens.Method.PGStatMode
property sets the mode in which the measurement should be run, low power, high speed or max
range. This mode can be set for all techniques but Electrochemical Impedance Spectroscopy. The
second property is PalmSens.Method.SelectedPotentiostatChannel which let you choose on which
channel the EmStat Pico should run the measurement.

6.20 MethodSCRIPTTM

The MethodSCRIPTTM scripting language is designed to integrate our OEM potentiostat (modules)
effortlessly in your hardware setup or product.

MethodSCRIPTTM allows developers to program a human-readable script directly into the potentiostat
module by means of a serial (TTL) connection. The simple script language allows for running all
supported electrochemical techniques and makes it easy to combine different measurements and
other tasks.

More script features include:

• Use of variables

• (Nested) loops

• Logging results to an SD card

• Digital I/O for example for waiting for an external trigger

• Reading auxiliary values like pH or temperature

• Going to sleep or hibernate mode

See for more information: www.palmsens.com/methodscript

Mains Frequency
To eliminate noise induced by other electrical appliances it is highly recommended to
set your regional mains frequency (50/60 Hz) in the static property
PalmSens.Method.PowerFreq.

https://www.palmsens.com/methodscript

28

Getting started with PalmSens SDK for Python

6.20.1 Sandbox Measurements
PSTrace includes an option to make use MethodSCRIPTTM Sandbox to write and run scripts. This is a
great place to test MethodSCRIPTTM measurements to see what the result would be. That script can
then be used in the MethodScriptSandbox technique in the SDK as demonstrated below.

