

Getting started with PalmSens SDK
for LabVIEW

Based on PalmSens SDK v5.10

Last revision: December 22, 2022
© 2022 PalmSens BV
www.palmsens.com

 1

Contents
1 Contents of the PalmSens SDK ... 2

1.1 Example programs .. 3

1.2 Compatible devices and firmware ... 3

2 Setting up the SDK for your LabVIEW project ... 5

2.1 Requirements .. 5

2.2 Adding the PalmSens folder ... 5

2.3 Creating an instance of the PalmSens Class.. 6

3 Connecting and Measuring .. 8

3.1 Discovering available instruments .. 8

3.2 Connecting/disconnecting to/from instruments ... 9

3.3 Measuring ... 10

3.3.1 Creating a method ... 10

3.3.2 Running a measurement ... 16

3.4 MethodSCRIPTTM .. 18

3.4.1 Sandbox Measurements .. 18

4 Appendix A: Parameters for each technique.. 20

4.1 Common properties ... 26

4.2 Pretreatment settings .. 27

4.3 Linear Sweep Voltammetry (LSV) [0] .. 27

4.4 Differential Pulse Voltammetry (DPV) [1] .. 27

4.5 Square Wave Voltammetry (SWV) [2] .. 27

4.6 Normal Pulse Voltammetry (NPV) [3] ... 28

4.7 AC Voltammetry (ACV) [4] .. 28

4.8 Cyclic Voltammetry (CV) [5] .. 28

4.8.1 Fast Cyclic Voltammetry Scans ... 28

4.9 Chronopotentiometric Stripping (SCP) [6] ... 29

4.10 Chronoamperometry (CA) [7] .. 29

4.11 Pulsed Amperometric Detection (PAD) [8] .. 29

4.12 Fast Amperometry (FAM) [9] ... 29

4.13 Chronopotentiometry (CP) [10] ... 30

4.13.1 Open Circuit Potentiometry (OCP) .. 30

4.14 Multiple Pulse Amperometry (MPAD) [11]... 30

4.15 Electrochemical Impedance Spectroscopy (EIS) .. 30

4.15.1 Time Scan .. 31

4.15.2 Potential Scan .. 32

4.16 Recording extra values (BiPot, Aux, CE Potential…) .. 32

4.17 Multiplexer ... 33

4.17.1 Multiplexer settings .. 34

4.18 Versus OCP ... 34

4.19 Properties for EmStat Pico .. 35

2

1 Contents of the PalmSens SDK

The PalmSens SDK contains the following .NET libraries and LabVIEW classes, controls and Vis in
the PalmSens folder:

Libraries Folder
Contains all the necessary .NET libraries

PalmSens LabVIEW class
Class that implements the basic features required to use our instruments in LabVIEW.

• Initialise: Initialises the class and .NET libraries.

• Dispose: Frees up memory used by .NET libraries.

• ListInstruments: Returns an array of the available instruments.

• Connect: Connects to the specified instrument.

• Disconnect: Disconnects from the connected instrument.

• Measure: Performs a measurement.

• AbortMeasurement: Aborts the current measurement

MeasurementResults and LiveCurveResults controls
Type definitions for the in and outputs of the Measure function.

Event Callback Vis
VIs used by the Measure function to receive data from .NET events.

Broken dependency error when using the SDK
When you have downloaded the SDK and extract its contents Windows will have
blocked the required .NET library .dll files. When you try to execute anything in the
SDK that uses these libraries you will get an error like this.

 3

1.1 Example programs

The following examples are included.

Example – BasicExample
Demonstrates how to use the PalmSens class to run a measurement.

Example – MethodSCRIPTExample
Demonstrates how to use the PalmSens class to run a MethodSCRIPTTM measurement.

Example – BasicUIExample
Demonstrates how to use the PalmSens class to run and plot a measurement in real-time and the
recommended method to abort, disconnect, or terminate the app during an active measurement.

1.2 Compatible devices and firmware

 Minimum required
firmware version

EmStat 3.7

EmStat2 7.7

EmStat3 7.7

EmStat3+ 7.7

To prevent this error you will need to manually unblock the PalmSens SDK for
LabVIEW.zip file before unpacking its contents. To do this go to right click on the zip
file and select Properties. Then click on the Unblock checkbox and click on OK.

If this does not resolve the issue you may need to do this for each file in the
PalmSens\Libraries subfolder.

4

EmStat4 1.2

EmStat Go 7.7

EmStat Pico 1.3

Sensit Smart 1.3

Sensit BT 1.3

MultiEmStat 7.7

PalmSens3 2.8

PalmSens4 1.7

MultiPalmSens4 1.7

 5

2 Setting up the SDK for your LabVIEW project

2.1 Requirements

To discover our instruments and use our SDK libraries our drivers and the .NET/c++ runtimes need to
be installed. We highly recommend installing PSTrace or MultiTrace as this installs all the required
dependencies.

The following diagram shows the inheritance structure of the Method classes:

2.2 Adding the PalmSens folder

To add the SDK to a new or existing LabVIEW project add the PalmSens folder. Right click on the My
Computer entry in the Project Explorer, go to Add and select Folder. Both the Snapshot and Auto-
populating options will work.

6

2.3 Creating an instance of the PalmSens Class

To create an instance of the PalmSens class select it in the Project Explorer and drag it to your VI.

Switch to the block diagram and drag and drop the Initialise function and connect it to the
PalmSens.lvclass block.

 7

Finally, a reference to a Boolean indicator needs to provided to the Initialise block. This indicator will
signal when the instrument is running a measurement and when the measurement is finished. Switch
back to the Front Panel and add a Boolean indicator. Then switch back to the block diagram right click
on the indicator, go to Create and select Reference.

Finally, connect the Boolean reference to the Init block terminal to complete the setup of the PalmSens
LabVIEW class.

The following chapter will demonstrate how to use the functions of this class.

8

3 Connecting and Measuring

The following chapter details how to discover all available instruments, connect to an instrument, run
measurements on the device and finally how to properly close a connection to a device. If you have
not done so already follow the steps in chapter 2 to set up the LabVIEW class in your VI. For reference
the result of the following steps are available in the BasicExample VI.

3.1 Discovering available instruments

To get a list of all available/connected instruments drag and drop the ListInstruments function VI from
the PalmSens lvclass into your block diagram and connect it to the initialized instance of the
PalmSens class.

The result of the ListInstruments function is an array of strings. For this example, we have added an
indicator to show the results.

 9

3.2 Connecting/disconnecting to/from instruments

Each instance of the PalmSens class can be connected to a single instrument. To connect to an
instrument drag and drop the Connect function VI from the PalmSens lvclass into your block diagram
and connect it to the initialized instance of the PalmSens class. To specify which instrument to connect
to an integer value must be provided, this value is the index of the instrument in the array obtained
from the ListInstruments block.

This diagram assumes there is an instrument connected. To disconnect from an instrument add the
Disconnect function VI from the PalmSens lvclass into your block diagram and connect it after the
Connect function.

Memory usage

Stopping a running VI with the abort button can result in memory leaks in the .NET
libraries which can eventually cause the LabVIEW VI to crash.

Therefore it is highly recommended to always dispose the PalmSens class using the
Dispose function. This function will abort any running measurements, disconnect the
instruments and properly clean up the objects in the .NET libraries.

10

3.3 Measuring

Starting a measurement is done by sending method parameters to a PalmSens/EmStat device.

3.3.1 Creating a method
To run a measurement on your instrument, you will first have to create an instance of a method that
defines the parameters for the technique to run. Appendix A provides an overview of all techniques
and their respective parameters.

To create an instance of a method in LabVIEW add a .NET constructor node to your block diagram.

 11

This will open Select .NET Constructor window. (1) Click on browse, (2) navigate to the
PalmSens/Libraries folder included with the SDK and select the PalmSens.Core.dll, and (3) then click
on OK.

Alternatively you can select the PalmSens.Core Assembly from the dropdown list in the .NET
Constructor Window.

12

Then double click on the PalmSens.Techniques item near the bottom of the list to expand it.

Select the technique you want to run and click on OK, for reference see appendix A and the PSTrace
help documentation. For this example we will use the Linear Sweep Voltammetry technique.

 13

To define the parameters for a technique right click on the constructor node, go to Create, then to
Property for PalmSens.Techniques… Class and select the parameter you want to set, Appendix A lists
the relevant parameters for each technique.

Connect the property to the constructor node and change it to write by right clicking on it.

Then create a constant by right clicking on the node and set that to the desired value.

An example of what a configured method looks like

14

Current/Potential Ranges
Current and potential ranges are respectively stored in the Ranging and
RangingPotential parameters. To set the minimum, maximum, and starting range you
will need to create an instances of the current/potential ranges by adding .NET
constructor nodes.

(1) Make sure that you selected the PalmSens.Core Assembly in the Select .NET
Constructor window and (2) expand the PalmSens item by double clicking on it.

(1) Select CurrentRange, or PotentialRange when defining the Potential Ranges, and
(2) select the constructor with the CurrentRanges cr or PotentialRanges pr argument
respectively.

 15

Current/Potential Ranges, continued

Add a constant value to the cr/pr node and select the range from the list. These current
ranges can then be set to the Ranging/RangingPotential Maximum, Minimum, and Start
parameters.

Mains Frequency
To eliminate noise induced by other electrical appliances it is highly recommended to
set your regional mains frequency (50/60 Hz) in the static property
PalmSens.Method.PowerFreq. Add a .NET property node to your Block Diagram.

(1) Make sure that you selected the PalmSens.Core Assembly in the Select Object From
Assembly window and (2) expand the PalmSens item by double clicking on it.

Select Method and in the Block Diagram click on the property and select PowerFreq.

16

3.3.2 Running a measurement
To run a measurement you must be connected to an instrument, 3.2, and need an instance of a
method, 3.3.1. To run a measurent drag and drop the Measure function VI from the PalmSens lvclass
into your block diagram and connect it to the PalmSens class.

.
Make sure to connect the method to the input. The output can be stored in an indicator, the easiest
way to view the results is to right click on the ouput node and select create indicator. The type of the
output is defined in MeasurementResults.ctl, it is a set of x and y values with strings for the name and
units. Similar to PSTrace a Linear Sweep Voltammetry measurement will give you one set of current
and potential values, a Cyclic Voltammetry measurement will give you multiple sets of current and
potential values corresponding to the amount of scans, and an Chronopotentiometry / Amperometric
Detection measurement will give you a set of current and time values. When extra values are also
recorded these will return as additional sets of x and y values and the same applies to multiplexer
scan results.

The final diagram of the BasicExample VI.

 17

Blocking behavior of Measure function
The Measure function will block the VI until the measurement is complete, for more
information on this refer to chapter 4 and the BasicUIExample.

18

3.4 MethodSCRIPTTM

The MethodSCRIPTTM scripting language is designed to integrate our OEM potentiostat (modules)
effortlessly in your hardware setup or product.

MethodSCRIPTTM allows developers to program a human-readable script directly into the potentiostat
module by means of a serial (TTL) connection. The simple script language allows for running all
supported electrochemical techniques and makes it easy to combine different measurements and
other tasks.

More script features include:

• Use of variables

• (Nested) loops

• Logging results to an SD card

• Digital I/O for example for waiting for an external trigger

• Reading auxiliary values like pH or temperature

• Going to sleep or hibernate mode

See for more information: www.palmsens.com/methodscript

3.4.1 Sandbox Measurements
PSTrace includes an option to make use MethodSCRIPTTM Sandbox to write and run scripts. This is a
great place to test MethodSCRIPTTM measurements to see what the result would be. That script can
then be used in the MethodScriptSandbox technique in the SDK as demonstrated below.

https://www.palmsens.com/methodscript

 19

The MethodSCRIPTExample VI demonstrates how to run this measurement on a compatible
instrument, i.e. the Sensit, EmStat Pico and EmStat4 series instruments.

SandboxMeasurements parse and store the variables sent in pcks. Sets of x and y values are
generated automatically for each meas_loop that defines a pck with two or more variables, scripts with
multiple meas_loops will generate sets. The first variable in the pck will be set as the x-axis and a set
is created for each subsequent variable in the pck. Please note that to plot data versus time you will
need to add a variable with the time to the pck.

In the example above two sets of x and y values will be generated.

20

4 Control and visualization of running measurements

When a measurement is running the VI or loop the measure function VI is in will be blocked until the
measurement is done. This chapter and the BasicUIExample detail how you can work around this to
plot/process results in real-time and abort a running measurement.

4.1.1 Real-time visualization/processing of measurement data
The Measure function VI has an input terminal to which you can connect a reference to an indicator of
the cluster defined in the LiveCurveResult.ctl type definition. You can add this by dragging and
dropping the LiveCurveResult.ctl on to your front panel.

(1) Go to the indicator for the LiveCurveResult in the block diagram and (2) right click on it, go to
Create and select Reference. The resulting reference can then be connected to the Measure function
VI.

 21

The values of the LiveCurveResult will be updated during while the measurement is running and
LabVIEW receives a signal for each of these updates. The event block allows you to execute
something each time a signal is received. To receive measurement data in real-time the Event
Structure should be placed inside a loop.

The Event Structure has a timeout event setup by default, if you want to be able to use the loop the
Event Structure is placed in for other things it is highly recommended to define the timeout of the
Event Structure in the top left corner.

(1) Next you will need to add an Event case to the Event Structure. (2) In the Event window expand
the LiveCurveResult in the Event Sources frame and select <All Elements>, (3) then select Value
Change in the Events frame, and (4) click on OK.

22

The BasicUIExample uses this Event Structure to update the plot.

To be able to visualize/process these results the Measure function VI and event structure cannot be in
the same loop.

 23

4.1.2 Controlling the instrument when a measurement is running
To add the functionality of aborting a running measurement drag and drop the AbortMeasurement
function VI from the PalmSens lvclass into your block diagram.

Make sure that the AbortMeasurement function VI and the Measure function VI are placed in separate
loops. Otherwise, the most likely scenario will be that LabVIEW will postpone executing the abort
command until after the measurement is finished. This also applies applies to the Disconnect and
Dispose function VI commands and any other UI or blocks that you want to be able to execute in
parallel to a measurement.

24

5 Appendix A: Parameters for each technique

All applicable parameters for each technique can be found here. For the inheritance hierarchy of the
the techniques, see section 3 in this document. See section ‘Available techniques’ in the PSTrace
manual for more information about the techniques.

Each technique is identified by a specific integer value. This integer value can be used to create a
class derived from the corresponding technique, as follows:

PalmSens.Method.FromTechniqueNumber(integervalue)

The integer values are indicated in this appendix inside the brackets [] following each technique
name.

The techniques are also directly available from the PalmSens.Techniques namespace. Please refer
to the PSTrace manual for explanations and expected values for each parameter.

 25

Method

TimeMethod

Amperometric
Detection

Chrono
Amperometry

Fast
Amperometry

Fast
Potentiometry

Impedimetric
Method

MultiplePulse
Amperometry

PulsedAmp
Detection

Potentiometry

MultiStep
Amperometry/
Potentiometry

ScanMethod

Potential
Method

acVoltammetry

Cyclic
Voltammetry

LinearSweep

Pulse

NormalPulse

DifferentialPulse

SquareWave

Chrono
PotStripping

26

5.1 Common properties

Property Description Type

Technique The technique number used in the
firmware

System.Int

Notes Some user notes for use with this method System.String

StandbyPotential Standby Potential (for use with cell on
after measurement)

System.Float

StandbyTime Standby time (for use with cell on after
measurement)

System.Float

CellOnAfterMeasurement Enable/disable cell after measurement System.Boolean

MinPeakHeight Determines the minimum peak height in
µA. Peaks lower than this value are
neglected.

System.Float

MinPeakWidth The minimum peak width, in the unit of
the curves X axis. Peaks narrower than
this value are neglected.

System.Float

SmoothLevel The smoothlevel to be used.
-1 = none
0 = no smooth (spike rejection only)
1 = 5 points
2 = 9 points
3 = 15 points
4 = 25 points

System.Int

Ranging Ranging information, settings defining the
minimum/maximum/starting current range

PalmSens.Method.Ranging

PowerFreq Adjusts sampling on instrument to
account for mains frequency. It accepts
two values:
50 for 50Hz
60 for 60Hz

System.Int

 27

5.2 Pretreatment settings

The following properties specify the measurements pretreatment settings:

Property Description Type

ConditioningPotential Conditioning potential in volt System.Float

ConditioningTime Conditioning duration in seconds System.Float

DepositionPotential Deposition potential in volt System.Float

DepositionTime Deposition duration in seconds System.Float

EquilibrationTime Equilibration duration in seconds. BeginPotential is applied
during equilibration and the device switches to the
appropriate current range

System.Float

5.3 Linear Sweep Voltammetry (LSV) [0]

Class: Palmsens.Techniques.LinearSweep

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value
of E step since the data acquisition rate is limited by the connected
instrument.

System.Float

5.4 Differential Pulse Voltammetry (DPV) [1]

Class: Palmsens.Techniques.DifferentialPulse

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value
of E step since the data acquisition rate is limited by the connected
instrument.

System.Float

PulsePotential Pulse potential System.Float

PulseTime The pulse time System.Float

5.5 Square Wave Voltammetry (SWV) [2]

Class: Palmsens.Techniques.SquareWave

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

PulseAmplitude Amplitude of square wave pulse. Values are half peak-to-peak. System.Float

Frequency The frequency of the square wave System.Float

28

5.6 Normal Pulse Voltammetry (NPV) [3]

Class: Palmsens.Techniques.NormalPulse

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value
of E step since the data acquisition rate is limited by the connected
instrument.

System.Float

PulseTime The pulse time System.Float

5.7 AC Voltammetry (ACV) [4]

Class: Palmsens.Techniques.ACVoltammetry

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

SineWaveAmplitude Amplitude of sine wave. Values are RMS System.Float

Frequency The frequency of the AC signal System.Float

5.8 Cyclic Voltammetry (CV) [5]

Class: Palmsens.Techniques.CyclicVoltammetry

Property Description Type

BeginPotential Potential where scan starts and stops. System.Float

Vtx1Potential First potential where direction reverses. System.Float

Vtx2Potential Second potential where direction reverses. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value
of E step since the data acquisition rate is limited by the connected
instrument.

System.Float

nScans The number of repetitions for this scan System.Float

5.8.1 Fast Cyclic Voltammetry Scans
Class: Palmsens.Techniques.FastCyclicVoltammetry

Outdated class. PalmSens 3 and 4 only. CV’s with sampling over 5000 data points per second, use
the regular Palmsens.Techniques.CyclicVoltammetry() constructor instead.

 29

5.9 Chronopotentiometric Stripping (SCP) [6]

Class: PalmSens.Techniques.ChronoPotStripping

Property Description Type

EndPotential Potential where measurement stops. System.Float

MeasurementTime The maximum measurement time. This value should
always exceed the required measurement time. It only
limits the time of the measurement. When the potential
response is erroneously and E end is not found within this
time, the measurement is aborted.

System.Float

AppliedCurrentRange The applied current range PalmSens.
CurrentRange

Istrip If specified as 0, the method is called chemical stripping
otherwise it is constant current stripping. The current is
expressed in the applied current range.

System.Float

5.10 Chronoamperometry (CA) [7]

Class: PalmSens.Techniques.AmperometricDetection

Property Description Type

Potential Potential during measurement. System.Float

IntervalTime Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

5.11 Pulsed Amperometric Detection (PAD) [8]

Class: PalmSens.Techniques.PulsedAmpDetection

Property Description Type

Potential The dc or base potential. System.Float

PulsePotentialAD Potential in pulse. Note that this value is not relative
to dc/base potential, given above.

System.Float

PulseTime The pulse time. System.Float

tMode DC: I(dc) measurement is performed at
potential E
pulse: I(pulse) measurement is performed at
 potential E pulse
differential: I(dif) measurement is I(pulse) - I(dc)

PalmSens.Techniques.
PulsedAmpDetection.
enumMode

IntervalTime Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

5.12 Fast Amperometry (FAM) [9]

Class: PalmSens.Techniques.FastAmperometry

Property Description Type

EqPotentialFA Equilibration potential at which the measurement
starts.

System.Float

Potential Potential during measurement. System.Float

IntervalTimeF Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

30

5.13 Chronopotentiometry (CP) [10]

Class: PalmSens.Techniques.Potentiometry

Property Description Type

Current The current to apply. The unit of the value is the applied
current range. So if 10 uA is the applied current range and
1.5 is given as value, the applied current will be 15 uA.

System.Float

AppliedCurrentRange The applied current range. PalmSens.
CurrentRange

RunTime Total run time of scan. System.Float

IntervalTime Time between two potential samples. System.Float

5.13.1 Open Circuit Potentiometry (OCP)
Class: PalmSens.Techniques.OpenCircuitPotentiometry

The same as setting the Current to 0.

Property Description Type

RunTime Total run time of scan. System.Float

IntervalTime Time between two potential samples. System.Float

5.14 Multiple Pulse Amperometry (MPAD) [11]

Class: PalmSens.Techniques.MultiplePulseAmperometry

Property Description Type

E1 First potential level in which the current is recorded System.Float

E2 Second applied potential level System.Float

E3 Third applied potential level System.Float

t1 The duration of the first applied potential System.Float

t2 The duration of the second applied potential System.Float

t3 The duration of the third applied potential System.Float

RunTime Total run time of scan. System.Float

5.15 Electrochemical Impedance Spectroscopy (EIS)

Class: PalmSens.Techniques.ImpedimetricMethod

The most common properties are described first. These are used for a typical EIS measurement, a
scan over a specified range of frequencies (i.e. using the default properties ScanType =
ImpedimetricMethod.
enumScanType.FixedPotential and FreqType =
ImpedimetricMethod.enumFrequencyType.Scan). The additional properties used for a TimeScan
and a PotentialScan are detailed separately in next sections.

Property Description Type

ScanType Scan type specifies whether a single or multiple
frequency scans are performed. When set to
FixedPotential a single scan will be performed, this is
the recommended setting. The TimeScan and
PotentialScan are not fully supported in the SDK, we
highly recommend you to implement yourself. A
TimeScan performs repeated scans at a given time
interval within a specified time range. A PotentialScan
performs scans where the DC Potential of the applied
sine is incremented within a specified range. A
PotentialScan should not be performed versus the OCP.

ImpedimetricMethod.
enumScanType

 31

Potential The DC potential of the applied sine System.Float

Eac The amplitude of the applied sine in RMS (Root Mean
Square)

System.Float

FreqType Frequency type specifies whether to perform a scan on
a range of frequencies or to measure a single frequency.
The latter option can be used in combination with a
TimeScan or a PotentialScan.

ImpedimetricMethod.
enumFrequencyType

MaxFrequency The highest frequency in the scan, also the frequency at
which the measurement is started

System.Float

MinFrequency The lowest frequency in the scan System.Float

nFrequencies The number of frequencies included in the scan System.Int

SamplingTime Each measurement point of the impedance spectrum is
performed during the period specified by SamplingTime.
This means that the number of measured sine waves is
equal to SamplingTime * frequency. If this value is less
than 1 sine wave, the sampling is extended to 1 /
frequency. So for a measurement at a frequency, at
least one complete sine wave is measured.

Reasonable values for the sampling are in the range of
0.1 to 1 s.

System.Float

MaxEqTime The impedance measurement requires a stationary
state. This means that before the actual measurement
starts, the sine wave is applied during MaxEqTime only
to reach the stationary state.

The maximum number of equilibration sine waves is
however 5. The minimum number of equilibration sines
is set to 1, but for very low frequencies, this time is
limited by MaxEqTime. The maximum time to wait for
stationary state is determined by the value of this
parameter. A reasonable value might be 5 seconds. In
this case this parameter is only relevant when the lowest
frequency is less than 1/ 5 s so 0.2 Hz.

System.Float

5.15.1 Time Scan

In a Time Scan impedance spectroscopy measurements are repeated for a specific amount of time at
a specific interval. The SDK does not support this feature fully, we recommend you to design your own
implementation for this that suits your demands.

Property Description Type

RunTime RunTime is not the total time of the measurement, but the
time in which a measurement iteration can be started. If a
frequency scan takes 18 seconds and is measured at an
interval of 19 seconds for a RunTime of 40 seconds three
iterations will be performed.

System.Float

IntervalTime IntervalTime specifies the interval at which a measurement
iteration should be performed, however if a measurement
iteration takes longer than the interval time the next
measurement will not be triggered until after it has been
completed.

System.Float

32

5.15.2 Potential Scan

In a Potential Scan impedance spectroscopy measurements are repeated over a range of DC potential
values. The SDK does not support this feature fully, we recommend you to design your own
implementation for this that suits your demands.

Property Description Type

BeginPotential The DC potential of the applied sine wave to start the series
of iterative measurements at.

System.Float

EndPotential The DC potential of the applied sine wave at which the
series of iterative measurements ends.

System.Float

StepPotential The size of DC potential step to iterate with. System.Float

5.16 Recording extra values (BiPot, Aux, CE Potential…)

The PalmSens.Method.ExtraValueMsk property allows you to record an additional value during your
measurement. Not all techniques support recording extra values, the SupportsAuxInput and
SupportsBipot properties are used to indicate whether a technique supports the recording of these
values. The default value for PalmSens.Method.ExtraValueMsk is
PalmSens.ExtraValueMask.None.

• None, no extra value recorded (default)

• Current

• Potential

• WE2, record BiPot readings (The behavior of the second working electrode is defined
with the method’s BipotModePS property. EnumPalmSensBipotMode.Constant sets it
to a fixed potential and EnumPalmSensBipotMode.Offset sets it to an offset of the
primary working electrode. The value in Volt of the fixed or offset potential is defined with
the method’s BiPotPotential property.)

 33

• AuxInput, similar to PSTrace it is possible to configure the readings of the auxilliary input.

Using the PalmSens.AuxInput.AuxiliaryInput class you can assign a name, offset, gain

and unit to the auxilliary input. The following example demonstrates how to set up the

Pt1000 temperature sensor from PSTrace.

psCommSimpleWinForms.comm.AuxInputSelected = new PalmSens.AuxInput.Auxiliar

yInputType(true, "Pt1000", "Temperature sensor", -275f, 189.1f,

 new PalmSens.Units.Temperature());

The can be ignored and set to true, the second argument is the name, third is the
description, fourth the offset, fifth the slope and the final argument is an instance of one
of the unit classes in the PalmSens.Units namespace.

• Reverse, record reverse current as used by Square Wave Voltammetry

• PolyStatWE, not supported in the PalmSens SDK

• DCcurrent, record the DC current as used with AC Voltammetry

• CEPotential, PalmSens 4 only

The PSSDKBiPotAuxExample example project demonstrates how to record extra values.

5.17 Multiplexer

The PalmSens.Method class is also used to specify the multiplexer settings for sequential and
alternating measurements. Alternating multiplexer measurements restricted to the chronoamperometry
and chronopotentiometry techniques.

The enumerator property PalmSens.Method.MuxMethod defines the type multiplexer measurement.

methodCA.MuxMethod = MuxMethod.None; //Default setting, no multiplexer
methodCA.MuxMethod = MuxMethod.Alternatingly;
methodCA.MuxMethod = MuxMethod.Sequentially;

//The channels on which to measure are specified in a boolean array
PalmSens.Method.UseMuxChannel: methodCA.UseMuxChannel = new bool[] { true, true,
false, false, false, false, false, true };

34

The code above will perform a measurement on the first two and last channels of an 8-channel
multiplexer. For a 16-channel multiplexer you would also need to assign true or false to the last 8
channels.

Alternating multiplexer measurement can only measure on successive channels and must start with
the first channel (i.e. it is possible to alternatingly measure on channels 1 through 4 but it is not
possible to alternatingly measure on channel 1, 3 and 5). The multiplexer functionality is demonstrated
in the PSSDKMultiplexerExample project.

5.17.1 Multiplexer settings
When using a MUX8-R2 multiplexer the multiplexer settings must be set digitally instead of via the
physical switches on the earlier multiplexer models. The type of multiplexer should be specified in the
connected device’s capabilities, when the multiplexer is connected before connecting to the software
the capabilities are updated automatically. Otherwise, when using the MUX8-R2 the
PalmSens.Devices.DeviceCapabilities.MuxType should be set to
PalmSens.Comm.MuxType.Protocol manually or by calling
PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfo,
PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfoAsync when connected
asynchronously.

For the MUX8-R2 the settings for a measurement are set in PalmSens.Method.MuxSett property with
an instance of the PalmSens.Method.MuxSettings class. For manual control these settings can be
set using the PalmSens.Comm.ClientConnection.SetMuxSettings function,
PalmSens.Comm.ClientConnection.SetMuxSettingsAsync when connected asynchronously.

method.MuxSett = new Method.MuxSettings(false)
{

CommonCERE = false,
ConnSEWE = false,
ConnectCERE = true,
OCPMode = false,
SwitchBoxOn = false,
UnselWE = Method.MuxSettings.UnselWESetting.FLOAT

};

5.18 Versus OCP

The versus open circuit potential settings (OCP) are defined in the PalmSens.Method.OCPmode,
PalmSens.Method.OCPMaxOCPTime, and PalmSens.Method.OCPStabilityCriterion properties.
The OCPmode is a bitmask specifies which of the following technique dependent properties or
combination thereof will be measured versus the OCP potential:

▪ Linear Sweep Voltammetry:
o BeginPotential = 1
o EndPotential = 2

▪ (Fast) Cyclic Voltammetry
o Vtx1Potential = 1
o Vtx2Potential = 2
o BeginPotential = 4

▪ Chronoamperometry
o Potential = 1

▪ Impedance Spectroscopy (Fixed potential and Time Scan)
o Potential = 1

▪ Impedance Spectroscopy (Potential Scan)
o BeginPotential = 1
o EndPotential = 2

The progress and result of the versus OCP measurement step are reported in the
PalmSens.Comm.MeasureVersusOCP class, which can be obtained by subscribing to the

 35

PalmSens.Comm.CommManager.DeterminingVersusOCP event which is raised when the versus
OCP measurement step is started.

//Defining versus OCP measurement step for a Cyclic Voltammetry measurement
_methodCV.OCPmode = 7; //Measure the (Vtx1Potential) 1 + (Vtx2Potential) 2 +
(BeginPotential) 4 = 7 versus the OCP potential
_methodCV.OCPMaxOCPTime = 10; //Sets the maximum time the versus OCP step can take to
10 seconds
_methodCV.OCPStabilityCriterion = 0.02f; //The OCP measurement will stop when the
change in potential over time is less than 0.02mV/s, when set to 0 the OCP measurement
step will always run for the OCPMaxOCPTime

5.19 Properties for EmStat Pico

There are two method parameters specific to the EmStat Pico. The PalmSens.Method.PGStatMode
property sets the mode in which the measurement should be run, low power, high speed or max
range. This mode can be set for all techniques but Electrochemical Impedance Spectroscopy. The
second property is PalmSens.Method.SelectedPotentiostatChannel which let you choose on which
channel the EmStat Pico should run the measurement.

