
Communication protocol for Sensit Wearable

Version 1.5, 2025-02-24

Table of Contents

1. Introduction . 1

1.1. Terminology . 1

2. Communication . 2

2.1. Connection viewer . 2

2.2. Communication protocol. 3

2.3. Communication modes. 3

3. Command summary . 4

4. Command details . 5

4.1. Get firmware version (t) . 5

4.2. Set register (S) . 6

4.3. Get register (G) . 6

4.4. Load MethodSCRIPT (l) . 7

4.5. Run loaded MethodSCRIPT (r) . 8

4.6. Execute (= load and run) MethodSCRIPT (e) . 9

4.7. Store loaded MethodSCRIPT to NVM (Fmscr) . 11

4.8. Load MethodSCRIPT from NVM (Lmscr) . 11

4.9. Get serial number (i) . 12

4.10. Get multi-channel serial number (m) . 13

4.11. Get MethodSCRIPT version (v) . 13

4.12. Enter bootloader (dlfw) . 14

4.13. Get directory listing (fs_dir) . 14

4.14. Read file (fs_get). 16

4.15. Write file (fs_put). 17

4.16. Delete file or directory (fs_del) . 18

4.17. Get file system information (fs_info) . 19

4.18. Format storage device (fs_format) . 20

4.19. Mount file system (fs_mount) . 20

4.20. Unmount file system (fs_unmount) . 21

4.21. Clear file system (fs_clear) . 21

4.22. Get runtime capabilities (CC) . 21

4.23. Get MethodSCRIPT capabilities (CM) . 22

4.24. Halt script execution (h) . 23

4.25. Resume script execution (H). 23

4.26. Abort script execution (Z) . 23

4.27. Abort measurement loop (Y) . 24

4.28. Reverse CV sweep (R) . 27

5. Register summary . 31

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | ii

5.1. Generic registers. 31

5.2. Sensit Wearable specific registers. 31

6. Register details. 33

6.1. Peripheral configuration (0x01) . 33

6.2. Permission level (0x02). 34

6.3. License register (0x04) . 34

6.4. Unique instrument ID (0x05) . 34

6.5. Device serial number (0x06) . 35

6.6. MethodSCRIPT autorun (0x08) . 35

6.7. Advanced options (0x09) . 36

6.8. UART data rate limit (0x0A) . 37

6.9. Reset instrument (0x0B) . 38

6.10. Multi-channel role (0x0D) . 38

6.11. System date and time (0x0E) . 38

6.12. Default GPIO config (0x0F) . 39

6.13. System warning (0x10). 39

6.14. Allowed pin modes (0x11) . 40

6.15. Auto calibration (0x83) . 40

6.16. Clear calibration (0x84). 41

6.17. Baud rate configuration (0x89) . 41

6.18. Low speed TIA 10M CH0 gain (0xA0). 42

6.19. Low speed TIA 10M CH0 offset (0xA1). 42

6.20. Low speed TIA 10M CH1 gain (0xA2). 43

6.21. Low speed TIA 10M CH1 offset (0xA3). 43

6.22. High speed TIA 10M gain (0xA4) . 44

6.23. High speed TIA 10M offset (0xA5) . 44

6.24. High speed TIA 1M gain (0xA6) . 45

6.25. High speed TIA 1M offset (0xA7) . 45

7. CRC16 protocol extension . 47

7.1. Introduction . 47

7.2. Line format . 47

7.3. Acknowledge messages . 48

7.4. Other changes . 48

7.5. Examples . 48

8. Error handling. 51

9. Version changes. 53

Version 1.4 . 53

Version 1.5 . 53

Appendix A: Error codes . 54

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | iii

Appendix B: MethodSCRIPT capabilities bit fields . 60

Appendix C: Communication capabilities bit fields . 64

Appendix D: Errata. 66

Data sent to the Sensit Wearable can be corrupted during EIS measurements . 66

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | iv

Chapter 1. Introduction

This document describes the “online” communication protocol of the Sensit Wearable.

Initial communication with the Sensit Wearable is always done using this online communication. Measurements

and other scripts can be started by sending a MethodSCRIPT, more information about MethodSCRIPT can be

found here: http://www.palmsens.com/methodscript

1.1. Terminology

PGStat Potentiostat / Galvanostat

EmStat PGStat device series by PalmSens

CE Counter Electrode

RE Reference Electrode

WE Working Electrode

Technique A standard electrochemical measurement technique

Iteration A single execution of a loop

Int Integer value

Float Floating-point number (e.g. 3.14)

SI International System of Units

Var (MethodSCRIPT) variable (usually command input)

HEX Hexadecimal (= base 16) number (e.g. 0xA1)

RAM The (volatile) work memory of the instrument, which is lost after a power cycle

NVM Non-Volatile Memory, i.e. memory that retains its contents after a power cycle

CRC Cyclic Redunancy Check, an error-detecting code

CRC16 A 16-bit CRC

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 1

http://www.palmsens.com/methodscript

Chapter 2. Communication

The Sensit Wearable has a UART (Serial) port as communication interface. This UART port can be accessed

through a USB to Serial converter, or through Bluetooth Low Energy (BLE). If a BLE connection is made, it takes

priority over the USB connection. To connect with the instrument, the below settings should be used. Note that

the bootloader uses slightly different settings than the application firmware. Normally the application firmware is

used. The bootloader is only used for maintenance tasks such as firmware updates.

Table 1. Sensit Wearable UART connection details.

Property Bootloader Application

Signal level 3.3 V

Baud rate 230400 bps 230400 bps1

Number of data bits 8

Number of stop bits 1

Parity None

Flow control None Software (XON/XOFF)

1 Default baud rate. This can be configured.



The Sensit Wearabe firmware uses XON/XOFF (software) flow control. It is highly

recommended to enable XON/XOFF flow control on the host side as well. This ensures a

reliable communication, even at high speeds and when the instrument or host is busy with

other tasks. However, flow control is not supported with BLE connections. Here, it is

recommended to limit the maximum datarate using the UART data rate limit register.


During startup the instrument may send an XON character (ASCII character with decimal

value 17). In case software flow control is not enabled on the host, the host software should

ignore the XON character.

2.1. Connection viewer

PSTrace version 5.6 or higher has a hidden feature that is useful when the communication protocol is used for

development of software for the Sensit Wearable. PSTrace will open the Connection viewer window when you

double-click on the "Not connected" label before connecting to the device.

The "Not connected" label used to activate the Connection Viewer window.

Once connected, the connection viewer window will show all messages transmitted to the instrument (in red),

and messages received from the instrument (in green). This can be helpful to understand the communication

between the host and the instrument. Below is an example of the connection viewer window. Note that PSTrace

is connected to an EmStat Pico in this example.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 2

The connection viewer window.

2.2. Communication protocol

All commands and responses are terminated with a newline character. The used newline character is the Line

Feed (LF) character ('\n' , ASCII code 10 or 0x0A). The instrument never transmits a Carriage Return (CR)

character ('\r' , ASCII code 13 or 0x0D) and CR characters received by the instrument are ignored.

When a command is received by the instrument, it will echo the first character of the command and then

respond with the command-specific data. After executing the command, a newline character is transmitted. If

an error occurs during the execution of a command, the error is returned just before the newline character. See

section Chapter 8, Error handling for more information about errors.

2.3. Communication modes

The device can be in two communication modes on which a subset of commands are available. These modes

are listed below.

• Idle mode: for storing scripts and changing settings

• Script execution mode: during script execution


While in idle mode the Sensit Wearable will automatically go into a sleep mode where the

processor is stopped to preserve power. All other hardware stays active and it will

automatically resume execution when commands are received. From the user perspective

this is unobservable, so it will behave the same as if the processor would be running.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 3

Chapter 3. Command summary

The following table gives an overview of all communication protocol commands.

ID Command Modes Description

0x01 t All modes Get firmware version

0x20 CC Idle Get runtime capabilities

0x21 CM Idle Get MethodSCRIPT capabilities

0x22 S Idle Set register

0x23 G Idle Get register

0x24 l Idle Load MethodSCRIPT

0x25 r Idle Run loaded MethodSCRIPT

0x26 e Idle Execute (= load and run) MethodSCRIPT

0x27 dlfw Idle Enter bootloader

0x2B Fmscr Idle Store loaded MethodSCRIPT to NVM

0x2C Lmscr Idle Load MethodSCRIPT from NVM

0x30 i Idle Get serial number

0x31 v Idle Get MethodSCRIPT version

0x33 fs_dir Idle Get directory listing

0x34 fs_get Idle Read file

0x35 fs_put Idle Write file

0x36 fs_del Idle Delete file or directory

0x37 fs_info Idle Get file system information

0x38 fs_format Idle Format storage device

0x39 fs_mount Idle Mount file system

0x3A fs_unmount Idle Unmount file system

0x3B fs_clear Idle Clear file system

0x3C m Idle Get multi-channel serial number

0x60 h Script Halt script execution

0x61 H Script Resume script execution

0x62 Z Script Abort script execution

0x63 Y Script Abort measurement loop

0x65 R Script Reverse CV sweep

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 4

Chapter 4. Command details

A list of all commands is given in the previous chapter. In this chapter, each commmand is described in more

detail.

Some commands have one or more arguments. The format and meaning of such arguments is documented in

those sections as well.

 Commands are case-sensitive. For example, s (hibernate) is a different command than S (Set

register).

4.1. Get firmware version (t)

Get the device firmware version. This includes the device type, firmware version, build date and release type.

Command format

t

Response format

Unlike most other commands, this command has a response consisting of multiple lines. The last line is

terminated with an asterisk and a newline character ('*\n'). The format is as follows:

tddddddvv..vv#mmm dd yyyy hh:mm:ss

R*

Key Type Size Description

dddddd text 6 The device type. For the Sensit Wearable this is senswb .

vv..vv text 4 The firmware version. The format is a 4-digit version

identifier xyzz , denoting firmware version x.y.zz (e.g. 1201
corresponds to firmware version 1.2.01).

mmm dd yyyy hh:mm:ss text 20 The build date and time.

R text 1 The release type:

• R for Release versions.

• B for Beta versions.

* text 1 Marks the end of the response.

Example

Below are some examples to demonstrate the format of the output.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 5

Example output for a Sensit Wearable with firmware v1.4.00

tsenswb1400#Jul 19 2024 16:57:21

R*

4.2. Set register (S)

Sets the value of a register. Registers contain instrument specific configuration, settings and information that are

accessible to the user. See Chapter 6, Register details for more information.


Some registers require a specific permission level to be accessed. See Section 6.2,

“Permission level (0x02)” for more details.

Command format

Sxxyy...yy

Key Type Size Description

xx hex 2 Register identifier (see Chapter 6, Register details)

yy…yy hex variable Value to write to the register, the number of digits depend on the register.

Response format

S

Example

The following example demonstrates writing the value 0xABCDEF12 to register 0x99 (= 153 decimal).

Example set register command

S99ABCDEF12

Example output

S

4.3. Get register (G)

Gets the value of a register. Registers contain instrument specific configuration, settings and information that are

accessible to the user. See Chapter 6, Register details for more information.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 6


Some registers require a specific permission level to be accessed. See Section 6.2,

“Permission level (0x02)” for more details.

Command format

Gxx

Key Type Size Description

xx hex 2 Register identifier (see Chapter 6, Register details)

Response format

Gyy...yy

Key Type Size Description

yy..yy hex variable The value of the register when queried, the number of bytes depends on the

register (see Chapter 6, Register details).

Example

The following example demonstrates how to get the device serial (register 0x06) from the instrument.

Example get register command

G06

Example output

G001200000000899B

4.4. Load MethodSCRIPT (l)

Load a MethodSCRIPT into RAM. The end of the script is indicated by an empty line (i.e., a line containing only

the newline character \n). The MethodSCRIPT is parsed during reception. Some script errors that can be

detected during parsing, such as syntax errors, are reported directly. If an error is encountered during parsing,

the script memory is cleared, so a new script must be loaded. If the script was loaded successfully (no error was

returned during loading), then the script can be executed by the r command (see Section 4.5, “Run loaded

MethodSCRIPT (r)”).

Command format

This command consists of multiple lines. The first line contains only the l command. Then, the MethodSCRIPT

is transmitted, line by line. After the last MethodSCRIPT line, an empty line must be transmitted to end the

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 7

command.

1 l

2 mm

3 ..

4 mm

Key Type Size Description

mm..mm text variable The MethodSCRIPT to load, terminated with an empty line. See the

MethodSCRIPT documentation for more information.

Response format

l

Example

The following example loads a MethodSCRIPT that prints "Hello World" 5 times when executed. It can then be

executed with the run command, see Section 4.5, “Run loaded MethodSCRIPT (r)”,

Example command (the newline characters are included here for clarity)

l\n

var i\n

store_var i 0i ja\n

loop i < 3i\n

 send_string "Hello World"\n

 add_var i 1i\n

endloop\n

\n

Example output (the newline characters are included here for clarity)

l\n

4.5. Run loaded MethodSCRIPT (r)

Run (execute) loaded MethodSCRIPT from RAM.

Command format

r

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 8

Response format

The output of this command starts with r\n to denote the successful start of the script. This response is then

followed by the output of the MethodSCRIPT, which depends on the actual script that is running. See the

MethodSCRIPT documentation to see what type of responses can be expected. Note that a MethodSCRIPT

does not have to transmit data, but most scripts do. When the MethodSCRIPT is finished (either successfully or

with an error), an empty line is transmitted.

Summarized, the output format is:

r

pp..pp

...

pp..pp

Key Type Size Description

pp..pp text variable The MethodSCRIPT output. See the MethodSCRIPT documentation for more

information.

Example

The following demonstrates running the MethodSCRIPT loaded in the example from Section 4.5, “Run loaded

MethodSCRIPT (r)”.

Example command (the newline characters are included here for clarity)

r

Example output (the newline characters are included here for clarity)

r

L

THello World

THello World

THello World

+

 L and + are MethodSCRIPT hints about entering and leaving a loop.

4.6. Execute (= load and run) MethodSCRIPT (e)

Load and run a MethodSCRIPT (same as l followed by r).

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 9

Command format

e

mm

..

mm

Key Type Size Description

mm..mm text variable The MethodSCRIPT to load, terminated with an empty line. See the

MethodSCRIPT documentation for more information.

Response format

e

pp..pp

...

pp..pp

Key Type Size Description

pp..pp text variable The MethodSCRIPT output. See the MethodSCRIPT documentation for more

information.

Example

The following demonstrates loading and running the same MethodSCRIPT as used in the example from Section

4.5, “Run loaded MethodSCRIPT (r)”.

Example command

e

var i

store_var i 0i ja

loop i < 3i

 send_string "Hello World"

 add_var i 1i

endloop

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 10

Example output

e

L

THello World

THello World

THello World

+

4.7. Store loaded MethodSCRIPT to NVM (Fmscr)

Store a loaded MethodSCRIPT to non-volatile memory (NVM).

Command format

Fmscr

Response format

F

Example

The following example demonstrates loading a script with l and storing it into the instrument’s non-volatile

memory.

Example command

l

send_string "Hello World!"

Fmscr

Example output

l

F

4.8. Load MethodSCRIPT from NVM (Lmscr)

Load a MethodSCRIPT from non-volatile memory (NVM). After the script has been loaded successfully, it can be

executed by the r command (see Section 4.5, “Run loaded MethodSCRIPT (r)”).

A MethodSCRIPT can only be loaded from NVM if it was written using the same MethodSCRIPT version as the

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 11

current firmware supports.

Command format

Lmscr

Response format

L

Example

This example shows how to load a script from non-volatile memory (NVM) and execute it with an r command.

The loaded script here was loaded in the example from Section 4.8, “Load MethodSCRIPT from NVM (Lmscr)”

Example command

Lmscr

r

Example output

L

r

THello World!

4.9. Get serial number (i)

Get the serial number of the instrument.

 For some instruments, this is not the same as the serial printed on the housing.

Command format

i

Response format

ixx..xx

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 12

Key Type Size Description

xx..xx text variable The serial number.

Example

The following example queries the device serial.

Example command

i

Example output

iSENWB24C0025

4.10. Get multi-channel serial number (m)

Get the device serial number from a multi-channel instrument.


The Sensit Wearable does not support multi-potentiostat configurations, so this command

will always throw an error.

Example output for devices without multichannel support

m!0048

4.11. Get MethodSCRIPT version (v)

Get the MethodSCRIPT version. This number indicates the internal storage representation of a MethodSCRIPT

rather than the version of MethodSCRIPT specification. The MethodSCRIPT version number is used to

determine if the MethodSCRIPT stored in NVM (using the Fmscr command) can be loaded or not. A list of Sensit

Wearable firmware versions and the associated MethodSCRIPT versions is given below.

Sensit Wearable firmware version MethodSCRIPT version

1.4.0 01.06.00

1.4.1 01.06.01

1.5.0 01.07.00

Command format

v

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 13

Response format

vxx..xx

Key Type Size Description

xx..xx text variable The MethodSCRIPT version supported by the firmware.

Example

This example demonstrates reading the MethodSCRIPT version.

Example command

v

Example output (MethodSCRIPT version = 1.6.0)

v01.06.00

4.12. Enter bootloader (dlfw)

Resets the instrument into bootloader mode. The bootloader is mainly intended to perform firmware updates.


On the Sensit Wearable, this command will erase the current application firmware before

entering the bootloader. This means that no measurements can be performed anymore until

a firmware update has been performed successfully.

Command format

dlfw

Response format

d

4.13. Get directory listing (fs_dir)

Get a list of all files in the specified directory.

 It might take some time to find all files on the file system.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 14

 On EmStat4 and EmStatPico based devices fs_dir recursively shows files in subdirectories.

On the Nexus, only the immediate directory contents are shown.

Command format

fs_dir [path]

Key Type Size Description

[path] text variable (Optional) Path of the directory to search. If no path is provided, all files on

the file system are included.

Response format

The response will consist of one line of information for each file found. The information includes the file date and

time, type (directory or normal file), size, and path. The response ends with an empty line.

f

YYYY-MM-DD hh-mm-ss;TTT;SS..SS;pp..pp

...

YYYY-MM-DD hh-mm-ss;TTT;SS..SS;pp..pp

Key Type Size Description

YYYY dec 4* File date†, year

MM dec 2* File date†, month (01-12)

DD dec 2* File date†, day (01-31)

hh dec 2* File time†, hours (00-23)

mm dec 2* File time†, minutes (00-59)

ss dec 2* File time†, seconds (00-59)

TTT text 3 File type (FIL for file, DIR for directory)

SS..SS dec variable

(1-10)

File size in bytes

pp..pp text variable Path to the file/directory


* Older firmware versions may print the decimal fields without padding, e.g:

0-0-0 0-0-0;FIL;0;empty.txt


† The file date and time are based on the system date and time. In order to have a

meaningful file date/time, make sure to set the system date and time before creating a file.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 15


Depending on the device, the timestamp associated with a file may be its creation time or its

last modification time. On the EmStatPico, Sensit Wearable, and EmStat4, it is the creation

time. On the Nexus, it is the last modification time.



In case a file is not closed correctly, the file size will be reported as 4294967295 bytes. This

can happen if an instrument is powered down while a file was still open. In this case, a small

amount of data that was not flushed to the file storage yet might be lost. However, the file

should still be readable, and the correct amount of data (that has been successfully written)

will be returned.

Example

The following example lists the content of the example/doc directory.

Example command

fs_dir example/doc/

Example output

f

2022-02-22 20:22:02;FIL;4;example/doc/test.txt

2022-02-22 22:22:22;FIL;14;example/doc/measurement.txt

Example output in case no files are found

f

4.14. Read file (fs_get)

Read a file from the file system on the instrument.

Command format

fs_get <path>

Key Type Size Description

<path> text variable Path of the file to retrieve.

Response format

The command fs_get <path>\n prints f\n , followed by the contents of the requested file. The end of the file is

indicated by an ASCII file separator character (0x1C). The output ends with an empty line (i.e., a newline

character) if the file was read and transmitted successfully, otherwise it ends with an error code. The file

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 16

separator character is always transmitted, even in case of a file error.

f

cc..cc

cc..cc

cc..cc

\x1C

Key Type Size Description

cc..cc text variable The file content in ASCII format.

\x1C - 1 The file separator character (0x1C).

Example

This example requests the contents of the file example/hello_world.txt.

Example command

fs_get example/hello_world.txt

Example output

f

This is an example. Hello World!

The next line contains an file separator indicating end of transfer.

\x1C

4.15. Write file (fs_put)

Write a file to the file system of the instrument. The file path must be unique. If a file with the same path already

exists, an error is returned.

Command format

The command starts with fs_put <path>\n , where path is the path of the file to write. The following lines are the

file contents, that are written to the file. The end of the file is indicated by an ASCII file separator character (0x1C).

fs_put <path>

xx..xx

\x1C

Key Type Size Description

<path> text variable The file path.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 17

Key Type Size Description

xx..xx text variable The file content in ASCII format.

\x1C - 1 The file separator character (0x1C).

Response format

The command returns a \n when it is accepted, as all commands do. It also returns an additional empty line (\n)

when the command is finished.

f

Example

Example command

fs_put example/hello_world.txt

This is an example. Hello World!

The next line contains a file separator indicating end of transfer.

\x1C

Example output

f

4.16. Delete file or directory (fs_del)

Remove a file or directory (recursively) from the file system.

 This can take a long time for file trees containing many elements.

Command format

fs_del <path>

Key Type Size Description

<path> text variable Path of the file or directory to remove.

Response format

f

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 18

Example

The following example removes the file /log.txt .

Example command

fs_del /log.txt

Example output

f

4.17. Get file system information (fs_info)

Get information about the file system (free/used/total space).

The file system information consists of free space, used space and total space.



Due to file system overhead, the total space will be less than the nominal capacity of the

storage medium. For example, on a flash chip of 16 MB, the total space could be 15345 kB

(approximately 15 MB). Furthermore, files will generally occupy more space than their actual

data size. For example, by writing 100 bytes to a file, the used space could increase with 8

kB, and the free size decrease accordingly. The exact amount of overhead depends of the

type and size of storage medium.

Command format

Example command

fs_info

Response format

f

used:UU..UUkB free:FF..FFkB total:TT..TTkB

Key Type Size Description

UU..UU dec variable Used size in kB*

FF..FF dec variable Free size in kB*

TT..TT dec variable Total size in kB*

* 1 kB = 1024 bytes

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 19

Example

Example command

fs_info

Example response

used:192kB free:7878464kB total:7878656kB

4.18. Format storage device (fs_format)

Format the file storage medium (e.g. flash or SD card). This prepares the storage medium to be used as file

system. It also removes all existing data.

Formatting a (large) storage device can take some time.

Once the storage device is formatted, it is generally not necessary to use this command again. To only remove

all files, it is recommended to use the fs_clear command instead. Especially when using an SD card, the

fs_clear command is much faster than the fs_format command.

 Formatting the file storage erases all files. This operation cannot be undone.

Command format

fs_format

Response format

f

4.19. Mount file system (fs_mount)

Mount the file system.

Command format

fs_mount

Response format

f

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 20

4.20. Unmount file system (fs_unmount)

Unmount the file system. This can be used to re-mount the filesystem, in combination with fs_mount .

Command format

fs_unmount

Response format

f

4.21. Clear file system (fs_clear)

Remove all files and folders from the storage medium.

 This operation cannot be undone.

Command format

fs_clear

Response format

f

4.22. Get runtime capabilities (CC)

Get the runtime capabilities. Return a list of supported commands for the instrument. Each bit represent one

command, the mapping between bits and commands can be found in Appendix C, Communication capabilities

bit fields.

Command format

CC

Response format

CXX

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 21

Key Type Size Description

XX..XX hex 32 Bit fields for commands

Example

Example command

CC

Example response

C000000000000000000000000000000000000000F000000001FFFD8FF0000000E

4.23. Get MethodSCRIPT capabilities (CM)

Get the MethodSCRIPT capabilities. Return a list of MethodSCRIPT commands that are licensed and supported

by the instrument, as hexadecimal value. Each bit represent one command, the mapping between bits and

commands can be found in Appendix B, MethodSCRIPT capabilities bit fields

Command format

CM

Response format

CYY

Key Type Size Description

YY..YY hex 32 Bit fields for MethodSCRIPT commands

Example

Example command

CM

Example response

C0002BFFF87FFFFFFFFFFBFFFFE

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 22

4.24. Halt script execution (h)

Halt execution of the running MethodSCRIPT.

This "pauses" the script. Execution can be resumed using the H command (see Section 4.25, “Resume script

execution (H)”).

Command format

h

Response format

h

Example

See the examples in Section 4.27.

4.25. Resume script execution (H)

Resume execution of the halted MethodSCRIPT.

Command format

H

Response format

H

Example

See the examples in Section 4.27.

4.26. Abort script execution (Z)

Abort execution of the current MethodSCRIPT. This has the same effect as the MethodSCRIPT command

abort . It effectively stops the execution of the script as soon as possible. If an abort occurs during a

(measurement) loop, all endloop commands are still executed. Consequently, the * and + characters that denote

the end of a loop will still be transmitted. If the MethodSCRIPT contains an on_finished: tag, the commands

after it will still be executed. MethodSCRIPT commands after the on_finished: tag cannot be aborted.

Unlike the MethodSCRIPT command abort , the command can also abort some long-running MethodSCRIPT

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 23

commands, such as await_int and certain measurements.

Command format

Z

Response format

Z

Example

See the examples in Section 4.27.

4.27. Abort measurement loop (Y)

Abort the current measurement loop. This will break the execution of a MethodSCRIPT measurement loop

command (i.e., a command starting with meas_loop_) after the current iteration. The current measurement

iteration, i.e., all MethodSCRIPT commands between the start and the end of the measurement loop, will be

executed, but no new iteration will be started. The script will then continue execution after the endloop
command.

Command format

Y

Response format

Y

Example

Below is an example MethodSCRIPT that performs a linear sweep from -1 V to +1 V, with steps of 250 mV and

a scan rate of 100 mV/s. This results in 9 measurements, each 2.5 second apart, with a total runtime of

approximately 22.5 seconds. In our example setup, a 100 kΩ resistor was connected to the working electrode,

so the measured current is expected to be between -10 µA and +10 µA, and the current range is set

accordingly.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 24

var c

var p

var i

var t

store_var i 0i ja

set_pgstat_mode 2

set_range ba 10u

cell_on

timer_start

meas_loop_lsv p c -1 1 250m 100m

 add_var i 1i

 pck_start

 pck_add i

 pck_add p

 pck_add c

 pck_end

endloop

timer_get t

meas 100m c ba

pck_start

pck_add t

pck_add c

pck_end

on_finished:

cell_off

send_string "Finished"

When the program is executed completely, the output will be something like this:

e

M0000

Pja8000001i;da7F0BDF9u;ba7678CD7p,10,20F,40

Pja8000002i;da7F48ED6u;ba78DBCE5p,10,20F,40

Pja8000003i;da7F85FB4u;ba7B3E948p,10,20F,40

Pja8000004i;da7FC3092u;ba7DA1200p,10,20F,40

Pja8000005i;da8059967n;ba8D7055Ef,14,20F,40

Pja8000006i;da803D24Cu;ba8265C17p,10,20F,40

Pja8000007i;da807A32Au;ba84C8C26p,10,20F,40

Pja8000008i;da80B7408u;ba872B4DDp,10,20F,40

Pja8000009i;da80F44E5u;ba898E141p,10,20F,40

*

Peb9570C36u;ba898E141p,10,20F,40

TFinished

The values in the data packages indicate that the measurement loop took approximately 22.5 seconds, and that

the measured current after the measurement loop has the same value as during the last iteration of the loop.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 25

However, if a Y command is send after the second iteration, the output will be something like this:

e

M0000

Pja8000001i;da7F0BDF9u;ba7679082p,10,20F,40

Pja8000002i;da7F48ED6u;ba78DB93Ap,10,20F,40

Y

Pja8000003i;da7F85FB4u;ba7B3E1F1p,10,20F,40

*

Peb872184Au;ba7D9E9A2p,10,20F,41

TFinished

…or, depending on the exact time the Y command is received, like this:

e

M0000

Pja8000001i;da7F0BDF9u;ba767942Ep,10,20F,40

Pja8000002i;da7F48ED6u;ba78DC43Cp,10,20F,40

Y

*

Peb84D7686u;ba7B3E948p,10,20F,40

TFinished

In this case, the values indicate that the measurement loop only took 5 seconds, and that the WE potential

remained at the value it had at the end of the last iteration that was executed.

By halting the program after the second iteration, the output would be:

e

M0000

Pja8000001i;da7F0BDF9u;ba767942Ep,10,20F,40

Pja8000002i;da7F48ED6u;ba78DB93Ap,10,20F,40

h

If the program would now be continued and then aborted after three more iterations, the output would be:

H

Pja8000003i;da7F85FB4u;ba7B3E59Dp,11,20F,40

Pja8000004i;da7FC3092u;ba7DA0E54p,10,20F,40

Pja8000005i;da8059967n;ba8C8AFADf,14,20F,40

Z

*

TFinished

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 26

As can be seen in the above example, the metadata of the 3th iteration (the value 11) indicates that a timing

error occurred. It can also be seen that the code directly following the measurement loop is not executed when

the script is aborted using the Z command, in contrast to the Y command, which only aborts the measurement

loop but continues executing the remainder of the MethodSCRIPT.

4.28. Reverse CV sweep (R)

During a CV (but not fast CV) sweep, reverse the sweep direction. This has the same effect as the

MethodSCRIPT command set_scan_dir 0 . Depending on the exact location where the reversal occurs, this

may end the current scan early and advance to the next, if present. This command has no effect if run outside of

a CV sweep.

Command format

R

Response format

R

Example

The plots below show the behaviour of the CV reverse command.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 27

Figure 1. CV Sweep without reversal

Figure 2. CV Sweep reversal short-cutting to next segment

Figure 3. CV Sweep reversal ending the scan

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 28

The following MethodSCRIPT examples demonstrate the same behaviour.

This script performs a 3 vertex CV measurement, from 0 V to -1 V to 1 V, with steps of 250 mV and a scan rate

of 1 V/s. Here only the potentials are sent back, for simplicity.

e

var c

var p

set_pgstat_chan 0

set_pgstat_mode 2

set_max_bandwidth 40

set_range ba 2100u

set_autoranging ba 210n 21m

set_e 0

cell_on

meas_loop_cv p c 0 -1 1 250m 1

pck_start

pck_add p

pck_end

endloop

on_finished:

cell_off

This results in 17 points.

e

M0005

Pda8000000

Pda7FC2F23u

Pda7F85E45u

Pda7F48D67u

Pda7F0BC8Au

Pda7F48D67u

Pda7F85E45u

Pda7FC2F23u

Pda8000000

Pda803D0DDu

Pda807A1BBu

Pda80B7299u

Pda80F4376u

Pda80B7299u

Pda807A1BBu

Pda803D0DDu

Pda8000000

*

Issuing the reverse command causes the sweep to change direction early. Below it can be seen that the sweep

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 29

only performs 3 steps in its initial direction instead of 4.

It can be seen that there is a delay between the R command being echo’d, and the data reversing. This occurs

due to the sweep potentials being set in advance, and so it shouldn’t be expected that the R command will take

immediate effect.

e

M0005

Pda8000000

Pda7FC2F23u

Pda7F85E45u

R

Pda7F48D67u

Pda7F85E45u <--- Previously this was another step down to Pda7F0BC8Au

Pda7FC2F23u

Pda8000000

Pda803D0DDu

Pda807A1BBu

Pda80B7299u

Pda80F4376u

Pda80B7299u

Pda807A1BBu

Pda803D0DDu

Pda8000000

*

If the reversal would cause the sweep to change to a potential and direction that do not appear later in the

current scan, then the sweep will advance to the next scan. If the CV is already in the final scan, it will end the

CV instead. This can be seen in the below data.

e

M0005

Pda8000000

Pda7FC2F23u

Pda7F85E45u

Pda7F48D67u

Pda7F0BC8Au

R

Pda7F48D67u

Pda7F85E45u

*

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 30

Chapter 5. Register summary

5.1. Generic registers

The following table defines registers that are the same on all MethodSCRIPT instruments.

ID Description Length

(bytes)

Basic permission Advanced

permission

0x01 Peripheral configuration 4 Read only Read / write

0x02 Permission level 4 Write only Write only

0x04 License register 8 Read only Read only

0x05 Unique instrument ID 16 Read only Read only

0x06 Device serial number 8 Read only Read only

0x08 MethodSCRIPT autorun 1 Read only Read / write

0x09 Advanced options 4 Read only Read / write

0x0A UART data rate limit 4 Read / write Read / write

0x0B Reset instrument 4 Write only Write only

0x0D Multi-channel role 1 Read only Read only

0x0E System date and time 7 Read / write Read / write

0x0F Default GPIO config 8 Read only Read / write

0x10 System warning 4 Read only Read only

0x11 Allowed pin modes 8 Read only Read only

5.2. Sensit Wearable specific registers

The table below lists all registers that are specific to the Sensit Wearable.

ID Description Length

(bytes)

Basic permission Advanced

permission

0x83 Auto calibration 4 None Write only

0x84 Clear calibration 4 None Write only

0x89 Baud rate configuration 1 Read only Read / write

0xA0 Low speed TIA 10M CH0 gain 4 Read only Read / write

0xA1 Low speed TIA 10M CH0 offset 4 Read only Read / write

0xA2 Low speed TIA 10M CH1 gain 4 Read only Read / write

0xA3 Low speed TIA 10M CH1 offset 4 Read only Read / write

0xA4 High speed TIA 10M gain 4 Read only Read / write

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 31

ID Description Length

(bytes)

Basic permission Advanced

permission

0xA5 High speed TIA 10M offset 4 Read only Read / write

0xA6 High speed TIA 1M gain 4 Read only Read / write

0xA7 High speed TIA 1M offset 4 Read only Read / write

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 32

Chapter 6. Register details

The internal registers are used to retrieve information, configure the device, or perform rarely used actions.

Some registers are write protected at startup and must be unlocked before use. The tables in Chapter 5,

Register summary show which access rights each register has for each permission level. The Permission level

(0x02) register can be used to set the permission level.

The data length of each register is given in bytes of represented data. This data is communicated in hexadecimal

notation, using 2 characters per byte.

Some registers are stored in the non-volatile memory (NVM) of the instrument, meaning that the setting can be

remembered even after a power cycle. On the Sensit Wearable, writing to those register will immediately update

the NVM.

6.1. Peripheral configuration (0x01)

Reads / writes the peripheral configuration as a bitmask from / to non-volatile memory. Support for external

peripherals can be enabled here. Pins for peripherals that are not enabled can be used as GPIO pins. All

peripherals default to GPIO. Multiple peripherals can be enabled at the same time by adding the hexadecimal

values. For example: bit 1 is 0x01 and bit 5 is 0x20, combining them gives 0x21.

 This setting is stored in NVM.

Register format

xxxxxxxx

Key Size (bytes) Description

xxxxxxxx 4 Peripheral configuration flags.

Table 2. Sensit Wearable peripheral configuration

Mask Name Description

0x0020 Enable 1.8 V reference

output

When enabled, output 1.8 V reference to the ANALOG_IN_2 pin. This

setting must be enabled for temperature measurements using the NTC

Thermistor.

0x0040 Reserved

0x0080 Reserved

0x0700 The system will use the

selected memory

option for file storage.

Must be set to 0x0200 (AT25SF128A)

Other Reserved Reserved for future use. Do not change!

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 33

6.2. Permission level (0x02)

By default, most registers are write protected to prevent accidental writes. This register can be used to disable

the write protection. It is advised to turn the write protection back on when access to write protected registers is

no longer required.

Register format

kkkkkkkk

Key Size (bytes) Description

kkkkkkkk 4 Key to for switching to a specific permission mode. See Table 3, “Permission

keys”.

Table 3. Permission keys

Level Key Description

Basic 0x12345678 Default configuration at startup. Read-only access to non-volatile registers.

Advanced 0x52243DF8 Full access to all user changeable settings.

6.3. License register (0x04)

Request the licenses programmed into this instrument. For more information contact PalmSens.

Register format

xxxxxxxxxxxxxxxx

Key Size (bytes) Description

xx..xx 8 Instrument specific license key.

Example

Command to read the license register.

G04

6.4. Unique instrument ID (0x05)

Reads the unique ID for this instrument.

 This is different than the device serial number.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 34

https://www.palmsens.com/contact/

Register format

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Key Size (bytes) Description

xx..xx 16 Unique hardware identifier.

Example

Command to read the instrument ID.

G05

6.5. Device serial number (0x06)

Contains the device serial number.

Register format

ttyybbbbnnnnnnnn

Key Size (bytes) Description

tt 1 A number specifying the device type.

yy 1 Production year.

bbbb 2 Production batch nr.

nnnnnnnn 4 Device ID, unique within all devices of the same type, year and batch.

Example

Command to read the serial number of the device.

G06

Example output

G001200000000899B

6.6. MethodSCRIPT autorun (0x08)

If set to 1, the MethodSCRIPT stored in non-volatile memory will be loaded and executed on startup. When the

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 35

script ends, the Sensit Wearable returns to its normal behavior.

 This setting is stored in NVM.

Register format

aa

Key Size (bytes) Description

aa 1 Autorun enable (00=disabled, 01=enabled).

Example

Command to read the autorun option.

G08

Command to enable the autorun option.

S0801

6.7. Advanced options (0x09)

The advanced options register is a bitmask of advanced options that can be enabled by the user.

Each option has a specific bit value (see table below). The value of this register is a bitwise OR of all option flags

that are enabled. Writing to this register sets or clears all bits to the specified value. When writing to this register,

make sure to set all required bits at once.

 This setting is stored in NVM.

Table 4. Advanced option bits

Bit mask Description

0x00000001 Enable extended voltage range.

The Sensit Wearable has a device-specific option bit for “Extended voltage range”.

Enabling this reduces the accuracy of measured currents and is not recommended.

0x80000000 Enable CRC16 protocol extension.

Register format

aaaaaaaa

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 36

Key Size (bytes) Description

aa..aa 4 Advanced options

Example

Command to read the advanced options register.

G09

Command to clear the advanced options register.

S0900000000


If the CRC16 protocol extension is (accidentally) enabled, it can only be disabled using a

command including valid CRC. In this case, the command S0900000000AA9D43 can be used

to clear the advanced options register, including the CRC16 protocol extension.

6.8. UART data rate limit (0x0A)

This register allows limiting the number of bytes per second that are sent by the device using UART. This is

independent of the UART baud rate. This can be useful when no flow control mechanism is used with UART and

the host cannot keep up with the data rate defined by the baud rate. A value of 0 disables data rate limiting, so

the instrument will transmit at the maximum achievable speed.

Register format

dddddddd

Key Size (bytes) Description

dd..dd 4 Data rate limit in bytes per second

Example

Command to read the UART data rate limit.

G0A

Command to set the UART data rate limit to 5000 (=0x1388) bytes/sec.

S0A00001388

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 37

6.9. Reset instrument (0x0B)

Writing 0x93628ADE to this register will initiate a software reset of the device.

 This command will not return a newline if the reset is successful.

Register format

93628ADE

Key Size (bytes) Description

93628ADE 4 Magic key to reset the instrument.

Example

Command to reset the instrument.

S0B93628ADE

6.10. Multi-channel role (0x0D)

Instrument role in a multi-channel setup. This feature is not supported for the Sensit Wearable, so this register

will always return 0x00 (Stand-alone, no multi-instrument) when read.

6.11. System date and time (0x0E)

The system date and time in hex format. This is used for the time/date shown on files in the file system and for

the MethodSCRIPT command rtc_get . Depending in the instrument, the time may or may not be kept on a

restart.

Register format

yyyymmddhhaass

Key Size (bytes) Description

yyyy 2 Year, in HEX format

mm 1 Month (1-12), in HEX format

dd 1 Day (1-31), in HEX format

hh 1 Hour (0-23), in HEX format

aa 1 Minute (0-59), in HEX format

ss 1 Second (0-59), in HEX format

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 38

6.12. Default GPIO config (0x0F)

Default GPIO settings at startup. Once set (and committed to NVM) the instrument will initialize it’s GPIO to this

state on startup.

 This setting is stored in NVM.


The GPIO config is not checked when this register is updated. An incorrect configuration can

cause a system warning during startup.

Register format

ccccccccoooopppp

Key Size (bytes) Description

cc..cc 4 GPIO configuration mode with 2 bits per pin. The values are:

0 = Mode 0 (Input)

1 = Mode 1 (Output)

2 = Mode 2 (alternate function 1)

3 = Mode 3 (alternate function 2)

oooo 2 Output level with 1 bit per pin (only applicable for output pins)

pppp 2 Pull-up enabled with 1 bit per pin (only applicable for input pins)

Example

Command to configure pin 0 as input pin with pull-up and pin 1 as output pin with output value 1.

S0F0000000400020001

6.13. System warning (0x10)

Read and clear the system warning.

If a problem occurred that can not be displayed or handled at that moment, a system warning is set. This is

indicated with the blinking LED and available in this register. Reading this register will return the first error code

that caused a system warning. This is usually the most meaningful error code, since any subsequent errors

might be a consequence of the first error. This register is cleared when read.

Register format

wwwwwwww

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 39

Key Size (bytes) Description

ww..ww 4 Last encountered error code

For a list of error codes, see Appendix A, Error codes.

Example

Command to read and clear the system warning.

G10

6.14. Allowed pin modes (0x11)

Get allowed pin modes (input / output / peripheral) for all GPIO pins.

Each nibble (4 bits) represents 1 GPIO pin, the least significant nibble is GPIO0. Each bit within this nibble

represents a pinmode, where a high bit means the mode is allowed.

bit 0: input

bit 1: output

bit 2: peripheral 1

bit 3: peripheral 2

Register format

mmmmmmmmmmmmmmmm

Key Size (bytes) Description

mm..mm 8 Bitmask representing the allowed pinmodes per GPIO pin

Example

Command read the allowed pin modes

G11

6.15. Auto calibration (0x83)

Writing the correct key to this register will initiate the built-in auto calibration routine. This routine requires the WE

to be unconnected and takes up to 60 seconds. The auto calibration will not affect the 1M and 10M calibrations

(which are accessible via dedicated registers).

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 40

Register format

4321ABCD

Key Size (bytes) Description

4321ABCD 4 Key triggering auto calibration.

6.16. Clear calibration (0x84)

Clears all auto calibrated registers. This does not affect the 1M and 10M calibrations (which can be set using

dedicated registers).


PalmSens does not recommend clearing these calibrations on factory-calibrated

instruments.

Register format

4321ABCD

Key Size (bytes) Description

4321ABCD 4 Magic key to clear auto calibration.

6.17. Baud rate configuration (0x89)

Get or set the instrument’s UART baud rate. This register expects an index, which is specified for each baud

rate in the table below. The default baud rate can be found in Chapter 2, Communication. A restart is required

for the new baud rate to be applied.

Index Baud rate

0 Default baud rate (see Chapter 2, Communication)

1 9600

2 19200

3 38400

4 57600

5 115200

6 230400

7 460800

8 921600

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 41


Make sure to note which baud rate is set, because you can only connect to the device using

the configured baud rate.

Register format

BB

Key Size (bytes) Description

BB 1 Baud rate index

Example

Command to set the baud rate to 230400 bits per second.

S8906

6.18. Low speed TIA 10M CH0 gain (0xA0)

Calibration gain value for the low speed TIA of channel 0 at a 10M Ohm resistor. This value will be applied to the

measured current in the low speed channel 0 100 nA current range. The register value can be calculated using

the following formula:

register_value = gain_factor * 0x4000

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

 Reading 0xFFFFFFFF implies that this option was not calibrated and will use a gain of 1.

Register format

cccccccc

Key Size (bytes) Description

cc.cc 4 Gain factor for low speed TIA

6.19. Low speed TIA 10M CH0 offset (0xA1)

Calibration offset value for the low speed TIA of channel 0 at a 10M Ohm resistor. This value will be applied to

the measured current in the low speed channel 0 100 nA current range. The register value can be calculated

using the following formula:

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 42

register_value = offset (A) * 10e6 / 14e-6

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

 Reading 0xFFFFFFFF implies that this option was not calibrated and will use an offset of 0.

Register format

cccccccc

Key Size (bytes) Description

cc.cc 4 Offset value for low speed TIA

6.20. Low speed TIA 10M CH1 gain (0xA2)

Calibration gain value for the low speed TIA of channel 1 at a 10M Ohm resistor. This value will be applied to the

measured current in the low speed channel 1 100 nA current range. The register value can be calculated using

the following formula:

register_value = gain_factor * 0x4000

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

 Reading 0xFFFFFFFF implies that this option was not calibrated and will use a gain of 1.

Register format

cccccccc

Key Size (bytes) Description

cc.cc 4 Gain factor for low speed TIA

6.21. Low speed TIA 10M CH1 offset (0xA3)

Calibration offset value for the low speed TIA of channel 1 at a 10M Ohm resistor. This value will be applied to

the measured current in the low speed channel 1 100 nA current range. The register value can be calculated

using the following formula:

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 43

register_value = offset (A) * 10e6 / 14e-6

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

 Reading 0xFFFFFFFF implies that this option was not calibrated and will use an offset of 0.

Register format

cccccccc

Key Size (bytes) Description

cc.cc 4 Offset value for low speed TIA

6.22. High speed TIA 10M gain (0xA4)

Calibration gain for the high speed TIA at an 10M Ohm resistor. This value will be applied to the measured

current in the high speed 100 nA current range for both channels. The register value can be calculated using the

following formula:

register_value = gain_factor * 0x4000

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

 Reading 0xFFFFFFFF implies that this option was not calibrated and will use a gain of 1.

Register format

cccccccc

Key Size (bytes) Description

cc..cc 4 Gain value for the high speed TIA

6.23. High speed TIA 10M offset (0xA5)

Calibration offset for the high speed TIA at an 10M Ohm resistor. This value will be applied to the measured

current in the high speed 100 nA current range for both channels. The register value can be calculated using the

following formula:

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 44

register_value = offset (A) * 10e6 / 14e-6 + 0x4000

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

 Reading 0xFFFFFFFF implies that this option was not calibrated and will use an offset of 0.

Register format

cccccccc

Key Size (bytes) Description

cc..cc 4 Gain value for the high speed TIA

6.24. High speed TIA 1M gain (0xA6)

Calibration gain for the high speed TIA at an 1M Ohm resistor. This value will be applied to the measured current

in the high speed 1 μA current range for both channels. The register value can be calculated using the following

formula:

register_value = gain_factor * 0x4000

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

 Reading 0xFFFFFFFF implies that this option was not calibrated and will use a gain of 1.

Register format

cccccccc

Key Size (bytes) Description

cc..cc 4 Gain value for the high speed TIA

6.25. High speed TIA 1M offset (0xA7)

Calibration offset for the high speed TIA at an 1M Ohm resistor. This value will be applied to the measured

current in the high speed 1 μA current range for both channels. The register value can be calculated using the

following formula:

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 45

register_value = offset (A) * 1e6 / 14e-6 + 0x4000

 PalmSens does not recommend re-calibrating factory-calibrated instruments.

 Reading 0xFFFFFFFF implies that this option was not calibrated and will use an offset of 0.

Register format

cccccccc

Key Size (bytes) Description

cc..cc 4 Gain value for the high speed TIA

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 46

Chapter 7. CRC16 protocol extension

7.1. Introduction

For certain applications of the Sensit Wearable, data validity is of critical importance. For such applications, all

data communication from and to the instrument has to be verifiable. In order to make the communication

verifiable, an extension of the protocol was implemented that adds a sequence number and a 16-bit CRC to

each line. The CRC makes it possible to verify if received data is correct, i.e., if no part of the line was corrupted

or lost during transmission. The sequence number allows the host to verify that no complete lines were missed.

The CRC16 protocol extension can be enabled in the instruments non-volatile configuration by setting the

corresponding option bit (by issuing the command S0980000000 in normal mode). See the Set register

command and the Advanced options register for more details on how to enable this extension.

Enabling the CRC16 protocol has the following effects:

• All lines transmitted by the Sensit Wearable include a sequence number and CRC.

• All lines transmitted by the host software must include a sequence number and CRC.

• For each line correctly received by the Sensit Wearable, an acknowledge message is transmitted.

• In case the received sequence number is different then expected, an error message (!002C) is transmitted.

This can happen if a line is lost, but can also happen at the start of the communication, for example if the

host application has been restarted. A sequence number error is treated as a warning and is not considered

an error by the Sensit Wearable. The received line will still be acknowledged and processed.

• For each corrupted line received by the Sensit Wearable, an error message (!002B or !002D) is transmitted.

In this case, the message is not processed by the firmware.

• Some commands have a slightly different response.

The following section describes the protocol extension details.

7.2. Line format

The CRC extension adds an 8-bit sequence number and 16-bit CRC to each line before the newline separator

(\n). This applies to all data transmitted to and from the device.

Line format when CRC16 protocol extension is enabled

nnnnnnnnSSCCCC\n

Key Type Size Description

nnnnnnnn text variable The normal line that would be transmitted if the CRC16 protocol extension

was disabled.

SS hex 1 byte The sequence number (0-255).

CCCC hex 2 bytes The 16-bit CRC, calculated over nnnnnnnnSS .

The sequence number allows the receiver to detect if there are missing lines. There are separate, independent,

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 47

sequence numbers for data in both directions (from and to instrument). At startup, the Sensit Wearable initializes

its sequence number to 0 and also expects the host to start with sequence number 0. After every transmitted

line, the corresponding sequence number is incremented with one. After sequence number 255, it rolls over to

number 0.

The CRC allows the receiver to verify the integrity of the received data. The CRC is calculated over the full line,

excluding the newline character, but including the sequence number. The used CRC is the CRC-CCITT

polynomial x16 + x12 + x5 + 1, often represented as 0x1021. The initial value is 0xFFFF.

 When using Python, the standard libary function binascii.crc_hqx() can be used to

calculate the CRC.

7.3. Acknowledge messages

To give the host more certainty that the data is actually received by the Sensit Wearable, the instrument will

acknowledge every received line with an acknowledge message. The acknowledge message simply contains

the sequence number of the received line, between angle brackets, e.g. <00> . The message itself also contains

a sequence number and CRC like any other message transmitted by the instrument. The acknowledge

messages are only transmitted by the instrument and should not be transmitted by the host.

Acknowledge message format

<AA>SSCCCC\n

Key Type Size Description

AA hex 1 byte The sequence number (0-255) of the received line.

SS hex 1 byte The sequence number (0-255) of the instrument.

CCCC hex 2 bytes The 16-bit CRC, calculated over nnnnnnnnSS .

7.4. Other changes

The Sensit Wearable will respond mostly in the same way as it does without the CRC16 protocol extension. An

exception is with MethodSCRIPT related commands (e and l). These will normally return with just a letter

without newline and a send the newline when the entire script is received. Since this would interfere with the

acknowledge messages it was decided that when the CRC16 protocol extension is enabled it will add an

additional newline directly after the command response letter.

7.5. Examples

Below are some examples to demonstrate the differences between communication with and without the CRC16

protocol extension.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 48

https://docs.python.org/3/library/binascii.html#binascii.crc_hqx

Example command without CRC16 protocol extension

Host to instrument Instrument to host

t\n

tes4_lr1000#Jun 7 2021 16:51:38\n

R*\n

Example command with CRC16 protocol extension enabled

Host to instrument Instrument to host

t0A9524\n

<0A>454FBA\n

tes4_lr1000#Jun 7 2021 16:51:38463321\n

R*47D271\n

Note: \n is the newline character, initial sequence IDs are 0x0A for the host and 0x45 for the instrument.

MethodSCRIPT example without CRC16 protocol extension (Note that there’s no \n after the e response from

the instrument!)

Host to instrument Instrument to host

e\n

e

send_string "Hello World"\n

\n

\n

THello World\n

\n

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 49

MethodSCRIPT example with CRC16 protocol extension enabled

Host to instrument Instrument to host

e03BFA2\n

<03>4CFEF6\n

e4D7D16\n

send_string "Hello World"04A94C\n

<04>4ECF1D\n

057E6C\n

<05>4F89CA\n

50D13C\n

THello World5142CE\n

52F17E\n

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 50

Chapter 8. Error handling

After sending a command to the device, the device may respond with an error code. This may occur if a

command or parameter is not supported by the connected instrument or otherwise outside of its capabilities.

The general error format is an exclamation mark (!) followed by a 4-digit (hexadecimal) error code. However,

when an error is encountered during reception (loading) of a MethodSCRIPT, the error response also contains

the line and column number. When an error is encountered during execution of a MethodSCRIPT, the error

response only contains the line number. Because a newline character has already been transmitted at the start

of the script execution, the exclamation mark will be on the start of the line (not prepended by the e) in this case.

General error format of the device communication protocol

c!XXXX\n

Error format during MethodSCRIPT parsing (loading)

l!XXXX: Line LL, Col CC\n

Error format during MethodSCRIPT execution

!XXXX: Line LL\n

Key Type Size Description

c text 1 The first letter of the received command.

XXXX hex 4 The error code (see Appendix A, Error codes).

LL dec variable The line number of the MethodSCRIPT on which the error occurred.

CC dec variable The column number (character position within the line) on which the error

occurred.

For a full list of error codes, see Appendix A, Error codes

 Error codes can be different on different instruments and firmware versions.

After an error occurred, the instrument will ignore further input for a short time (roughly 50-100 ms). It is

recommended to wait for more than 100 ms before transmitting the next command, to make sure it will be

received and processed normally.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 51

Examples

Example of wrong communication protocol command

Host to instrument Instrument to host

wrong_command\n w

!0003\n

Example of wrong MethodSCRIPT command (parsing error)

Host to instrument Instrument to host

e\n e

wrong_methodscript_command\n !4001: Line 1, Col 27\n

\n

Example of MethodSCRIPT runtime error (division by zero)

Host to instrument Instrument to host

e\n e

var x\n

store_var x 0i ja\n

send_string "1"\n

div_var x 0i\n

send_string "2"\n

\n \n

T1\n

!0028: Line 4\n

\n

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 52

Chapter 9. Version changes

Version 1.4

• Initial release

Version 1.5

• Updated to MethodSCRIPT 1.7

• Added "Baud rate configuration" register

• Added "Allowed pin modes" register

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 53

Appendix A: Error codes

The following table lists all error codes that can be returned by MethodSCRIPT instruments.


The error codes and their meaning are the same for all instruments and firmware versions.

However, in some cases, the same error condition could result in a different error code when

using another instrument or firmware version.

Table 5. Error code lookup table

Error code Description

0x0001 An unspecified error has occurred

0x0002 An invalid VarType has been used

0x0003 The command was not recognized

0x0004 Unknown register

0x0005 Register is read-only

0x0006 Communication mode invalid

0x0007 An argument has an unexpected value

0x0008 Command exceeds maximum length

0x0009 The command has timed out

0x000B Cannot reserve the memory needed for this var

0x000C Cannot run a script without loading one first

0x000E An overflow has occurred while averaging a measured value

0x000F The given potential is not valid

0x0010 A variable has become either "NaN" or "inf"

0x0011 The input frequency is invalid

0x0012 The input amplitude is invalid

0x0014 Cannot perform OCP measurement when cell on

0x0015 CRC invalid

0x0016 An error has occurred while reading / writing flash

0x0017 The specified flash address is not valid for this device

0x0018 The device settings have been corrupted

0x0019 Authentication error

0x001A Calibration invalid

0x001B This command or part of this command is not supported by the current device

0x001C Step Potential must at least 1 DAC LSB for this technique

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 54

Error code Description

0x001D Pulse Potential must at least 1 DAC LSB for this technique

0x001E Amplitude must at least 1 DAC LSB this technique

0x001F Product is not licensed for this technique

0x0020 Cannot have more than one high speed and/or max range mode enabled

0x0021 The specified PGStat mode is not supported

0x0022 Channel set to be used as Poly WE is not configured as Poly WE

0x0023 Command is invalid for the selected PGStat mode

0x0024 The maximum number of vars to measure has been exceeded

0x0025 The specified PAD mode is unknown

0x0026 An error has occurred during a file operation

0x0027 Cannot open file, a file with this name already exists

0x0028 Variable divided by zero

0x0029 GPIO pin mode is not known by the device

0x002A GPIO configuration is incompatible with the selected operation

0x002B CRC of received line was incorrect (CRC16-ext)

0x002C ID of received line was not the expected value (CRC16-ext)

0x002D Received line was too short to extract a header (CRC16-ext)

0x002E Settings are not initialized

0x002F Channel is not available for this device

0x0030 Calibration process has failed

0x0032 Critical cell overload, aborting measurement to prevent damage.

0x0033 FLASH ECC error has occurred

0x0034 Flash program operation failed

0x0035 Flash Erase operation failed

0x0036 Flash page/block is locked

0x0037 Flash write operation on protected memory

0x0038 Flash is busy executing last command.

0x0039 Operation failed because block was marked as bad

0x003A The specified address is not valid

0x003B An error has occurred while attempting to mount the filesystem

0x003C An error has occurred while attempting to format the filesystem memory

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 55

Error code Description

0x003D A timeout has occurred during SPI communication

0x003E A timeout has occurred somewhere

0x003F The calibrations registers are locked, write actions not allowed.

0x0040 Memory module not supported.

0x0041 Flash memory format not recognized or supported.

0x0042 This register is locked for current permission level.

0x0043 Register is write-only

0x0044 Command requires additional initialization

0x0045 Configuration not valid for this command

0x0046 The multiplexer was not found.

0x0047 The filesystem has to be mounted to complete this action.

0x0048 This device is not a multi-device, no serial available.

0x004A MCU register access is not allowed, only RAM and peripherals are accessible.

0x004B Runtime (comm) command argument too short to be valid.

0x004C Runtime (comm) command argument has an invalid format.

0x004E Hibernate wake up source is invalid

0x004F Hibernate requires at least one wake up source, none was given.

0x0050 Wake pin for hibernate not configured as input

0x0051 The code provided to the permission register was not valid.

0x0052 An overrun error occurred on a communication interface (e.g. UART).

0x0053 Argument length incorrect for this register.

0x0055 The GPIO pins requested to change do not exist on this instrument.

0x0056 The selected GPIO pin mode is not allowed (by NVM config or device type).

0x0057 The on-board flash module has timed out.

0x0058 Timing error during fast measurement (possibly caused by communication).

0x005A The instrument cannot meet the requested measurement timing.

0x005B The variable type is already being measured.

0x006D The COMM command expected an hexadecimal value, but received something else.

0x006E The COMM command expected a decimal value, but received something else.

0x0071 The provided key does not fit the lock on this register.

0x0072 I2C port expander did not acknowledge a command

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 56

Error code Description

0x0073 Filesystem module not supported

0x0074 The IP address is not available (yet).

0x007A There is no measurement channel left for the requested measurement.

0x007B Temperature measurements during EIS with > 8 kHz are not supported.

0x007C The specified mode is unknown

0x007D The ADXL367 did not acknowledge an I2C command

0x007E An unexpected error occurred during an I2C operation.

0x007F I2C bus timeout during I2C operation (probably caused by I2C target device).

0x0080 The CE is oscillating.

0x0082 Operation requires system warnings to be cleared.

0x0083 Filesystem operations are not supported on this device.

0x4001 The script command is unknown

0x4004 An unexpected character was encountered

0x4005 The script is too large for the internal script memory

0x4008 This optional argument is not valid for this command

0x4009 The stored script is generated for an older firmware version and cannot be run

0x400B Measurement loops cannot be placed inside other measurement loops

0x400C Command not supported in current situation

0x400D Scope depth too large

0x400E The command had an invalid effect on scope depth

0x400F Array index out of bounds

0x4010 I2C interface was not initialized with i2c_config command

0x4011 This is an error, NAck flag not handled by script

0x4012 Something unexpected went wrong.

0x4013 I2C clock frequency not supported by hardware

0x4014 Non integer SI vars cannot be parsed from hex or binary representation

0x4016 RTC was selected as wake-up source and selected time is not supported

0x4018 The script has ended unexpectedly.

0x4019 The script command is only valid for a multichannel (combined) device

0x401A The script command cannot be called from within a measurement loop.

0x401B the pck sequence is called wrong

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 57

Error code Description

0x401C The maximum amounts of variables per packet has been exceeded.

0x401D The file path is too long for the file system.

0x401E Insufficient memory to store array index

0x4020 A timeout has occurred for one of the script commands

0x4021 The mux is not initialized/configured.

0x4022 Measurement loop timing is too fast to use with multiplexer

0x4023 The script command is only valid for a device with iR compensation

0x4024 The resistance value is to big for the whole autorange range

0x4025 The resistance value is to big for current current range

0x4026 The variable already exists when declared

0x4027 This command requires the cell to be enabled with the cell_on command

0x4028 This command requires the cell to be disabled with the cell_off command

0x4029 The technique requires that at least one step should be made

0x402A The variable names do not fit in memory anymore, try using shorter names.

0x402B The variable name did not start with 'a'-'z' or otherwise contained anything other than 'a'-

'z', '0'-'9' and '_'.

0x402C The variable name is too long to be processed.

0x402D The file mode is invalid.

0x402E The file mode does not support a counter in the file path.

0x402F The file path with the maximum counter value already exists.

0x4030 There are too many files open already.

0x4031 The specified multi device type is not defined.

0x4032 Cannot set the potential (or potential range) within the active measurement loop.

0x4033 Cannot set the current (or current range) within the active measurement loop.

0x4034 The used feature is not licensed on this product.

0x4035 The given filter type is unknown or not supported.

0x4036 The given command is only allowed within measurement loops.

0x4037 A computation has resulted in an overflow

0x4038 The array access was not correctly formed

0x4039 The literal argument was not correctly formed

0x4200 MScript argument value cannot be negative for this command

0x4201 MScript argument value cannot be positive for this command

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 58

Error code Description

0x4202 MScript argument value cannot be zero for this command

0x4203 MScript argument value must be negative for this command (also not zero)

0x4204 MScript argument value must be positive for this command (also not zero)

0x4205 MScript argument value is outside the allowed bounds for this command

0x4206 MScript argument value cannot be used for this specific instrument

0x4207 MScript argument datatype (float/int) is invalid for this command

0x4208 MScript argument reference was invalid (not 'a' - 'z')

0x4209 MScript argument variable type is invalid or not supported for this command

0x420A An unexpected, additional, (optional) MScript argument was provided

0x420B MScript argument variable is not declared

0x420C MScript argument is of type var, which is not supported by this command

0x420D MScript argument is of type literal, which is not supported by this command

0x420E MScript argument is of type array, which is not supported by this command

0x420F MScript argument array size is insufficient

0x4210 An f-string contains an opening brace that is never closed

0x4211 MScript argument is an array element, which is not supported by this command

0x7FFF A fatal error has occurred, the device must be reset

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 59

Appendix B: MethodSCRIPT capabilities bit fields

The following table lists all MethodSCRIPT commands and their respective bit field in the Section 4.23, “Get

MethodSCRIPT capabilities (CM)”

Table 6. MethodSCRIPT capabilities lookup table

Bit number Command string

0 RESERVED

1 var

2 array

3 store_var

4 copy_var

5 add_var

6 sub_var

7 mul_var

8 div_var

9 set_e

10 set_int

11 await_int

12 wait

13 loop

14 endloop

15 breakloop

16 if

17 else

18 elseif

19 endif

20 get_time

21 meas

22 RESERVED

23 meas_loop_lsv

24 meas_loop_cv

25 meas_loop_dpv

26 meas_loop_swv

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 60

Bit number Command string

27 meas_loop_npv

28 meas_loop_ca

29 meas_loop_pad

30 meas_loop_ocp

31 meas_loop_eis

32 set_autoranging

33 pck_start

34 pck_add

35 pck_end

36 set_max_bandwidth

37 set_cr

38 cell_on

39 cell_off

40 set_pgstat_mode

41 send_string

42 set_pgstat_chan

43 set_gpio_cfg

44 set_gpio_pullup

45 set_gpio

46 get_gpio

47 set_pot_range

48 RESERVED

49 set_poly_we_mode

50 file_open

51 file_close

52 set_script_output

53 array_get

54 array_set

55 i2c_config

56 i2c_read_byte

57 i2c_write_byte

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 61

Bit number Command string

58 i2c_read

59 i2c_write

60 i2c_write_read

61 hibernate

62 abort

63 timer_start

64 timer_get

65 set_range

66 set_range_minmax

67 meas_loop_cp

68 set_i

69 meas_loop_lsp

70 meas_loop_geis

71 int_to_float

72 float_to_int

73 bit_and_var

74 bit_or_var

75 bit_xor_var

76 bit_lsl_var

77 bit_lsr_var

78 bit_inv_var

79 set_channel_sync

80 set_acquisition_frac

81 mux_config

82 mux_get_channel_count

83 mux_set_channel

84 set_gpio_msk

85 get_gpio_msk

86 set_e_aux

87 RESERVED

88 set_ir_comp

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 62

Bit number Command string

89 RESERVED

90 meas_fast_cv

91 set_acquisition_frac_autoadjust

92 alter_vartype

93 meas_loop_acv

94 meas_ms_eis

95 meas_fast_ca

96 mod_var

97 notify_led

98 set_scan_dir

99 meas_loop_ca_alt_mux

100 meas_loop_cp_alt_mux

101 meas_loop_ocp_alt_mux

102 smooth

103 peak_detect

104 set_bipot_mode

105 set_bipot_potential

106 meas_loop_eis_dual

107 rtc_get

108 RESERVED

109 beep

110 battery_perc

111 get_progress

112 pow_var

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 63

Appendix C: Communication capabilities bit fields

The following table lists all MethodSCRIPT commands and their respective bit field in the Section 4.22, “Get

runtime capabilities (CC)”.

Table 7. Communication capabilities look up table

Bit number Command string Description

0 RESERVED

1 t Get firmware version

2 - 31 RESERVED

32 CC Get runtime capabilities

33 CM Get MethodSCRIPT capabilities

34 S Set register

35 G Get register

36 l Load MethodSCRIPT

37 r Run loaded MethodSCRIPT

38 e Execute (= load and run) MethodSCRIPT

39 dlfw Enter bootloader

40 - 42 RESERVED

43 Fmscr Store loaded MethodSCRIPT to NVM

44 Lmscr Load MethodSCRIPT from NVM

45 - 47 RESERVED

48 i Get serial number

49 v Get MethodSCRIPT version

50 RESERVED

51 fs_dir Get directory listing

52 fs_get Read file

53 fs_put Write file

54 fs_del Delete file or directory

55 fs_info Get file system information

56 fs_format Format storage device

57 fs_mount Mount file system

58 fs_unmount Unmount file system

59 fs_clear Clear file system

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 64

Bit number Command string Description

60 m Get multi-channel serial number

61 - 95 RESERVED

96 h Halt script execution

97 H Resume script execution

98 Z Abort script execution

99 Y Abort measurement loop

100 RESERVED

101 R Reverse CV sweep

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 65

Appendix D: Errata

Data sent to the Sensit Wearable can be corrupted during EIS measurements

Issue: There are a few microseconds during each meas_loop_eis iteration where data sent to the Sensit

Wearable over UART can become corrupted. This happens because the UART clock frequency is altered briefly.

If this happens, the Sensit Wearable will return a !0003 (unknown command) or !0009 (timeout) error. This cannot

happen to data sent by the Sensit Wearable.

Work-around: Retry the command until it succeeds.

Communication protocol for Sensit Wearable

Last document update: 2025-02-24

Page | 66

	Communication protocol for Sensit Wearable
	Table of Contents
	Chapter 1. Introduction
	1.1. Terminology

	Chapter 2. Communication
	2.1. Connection viewer
	2.2. Communication protocol
	2.3. Communication modes

	Chapter 3. Command summary
	Chapter 4. Command details
	4.1. Get firmware version (t)
	4.2. Set register (S)
	4.3. Get register (G)
	4.4. Load MethodSCRIPT (l)
	4.5. Run loaded MethodSCRIPT (r)
	4.6. Execute (= load and run) MethodSCRIPT (e)
	4.7. Store loaded MethodSCRIPT to NVM (Fmscr)
	4.8. Load MethodSCRIPT from NVM (Lmscr)
	4.9. Get serial number (i)
	4.10. Get multi-channel serial number (m)
	4.11. Get MethodSCRIPT version (v)
	4.12. Enter bootloader (dlfw)
	4.13. Get directory listing (fs_dir)
	4.14. Read file (fs_get)
	4.15. Write file (fs_put)
	4.16. Delete file or directory (fs_del)
	4.17. Get file system information (fs_info)
	4.18. Format storage device (fs_format)
	4.19. Mount file system (fs_mount)
	4.20. Unmount file system (fs_unmount)
	4.21. Clear file system (fs_clear)
	4.22. Get runtime capabilities (CC)
	4.23. Get MethodSCRIPT capabilities (CM)
	4.24. Halt script execution (h)
	4.25. Resume script execution (H)
	4.26. Abort script execution (Z)
	4.27. Abort measurement loop (Y)
	4.28. Reverse CV sweep (R)

	Chapter 5. Register summary
	5.1. Generic registers
	5.2. Sensit Wearable specific registers

	Chapter 6. Register details
	6.1. Peripheral configuration (0x01)
	6.2. Permission level (0x02)
	6.3. License register (0x04)
	6.4. Unique instrument ID (0x05)
	6.5. Device serial number (0x06)
	6.6. MethodSCRIPT autorun (0x08)
	6.7. Advanced options (0x09)
	6.8. UART data rate limit (0x0A)
	6.9. Reset instrument (0x0B)
	6.10. Multi-channel role (0x0D)
	6.11. System date and time (0x0E)
	6.12. Default GPIO config (0x0F)
	6.13. System warning (0x10)
	6.14. Allowed pin modes (0x11)
	6.15. Auto calibration (0x83)
	6.16. Clear calibration (0x84)
	6.17. Baud rate configuration (0x89)
	6.18. Low speed TIA 10M CH0 gain (0xA0)
	6.19. Low speed TIA 10M CH0 offset (0xA1)
	6.20. Low speed TIA 10M CH1 gain (0xA2)
	6.21. Low speed TIA 10M CH1 offset (0xA3)
	6.22. High speed TIA 10M gain (0xA4)
	6.23. High speed TIA 10M offset (0xA5)
	6.24. High speed TIA 1M gain (0xA6)
	6.25. High speed TIA 1M offset (0xA7)

	Chapter 7. CRC16 protocol extension
	7.1. Introduction
	7.2. Line format
	7.3. Acknowledge messages
	7.4. Other changes
	7.5. Examples

	Chapter 8. Error handling
	Chapter 9. Version changes
	Version 1.4
	Version 1.5

	Appendix A: Error codes
	Appendix B: MethodSCRIPT capabilities bit fields
	Appendix C: Communication capabilities bit fields
	Appendix D: Errata
	Data sent to the Sensit Wearable can be corrupted during EIS measurements

