EMSTAT4 MUX[™]

multiplexed potentiostat / galvanostat / impedance analyzer

Contents

One Potentiostat for Multiple Cells	3
Main Specifications	3
Cell Configurations	4
Connectors	4
Adding more channels	5
Cell Connection Options	6
Supported Techniques	7
Measurement Specifications	8
System Specifications	9
Standard EmStat4 MUX Kit	11
PSTrace: Software for Windows	12
EmStat4 MUX works with MethodSCRIPT™	14
Software Development Kits for .NET	15

> See for more information: www.palmsens.com/emstat4mux

One Potentiostat for Multiple Cells

Your data always secured

The EmStat4 MUX is equipped with internal storage memory. This allows for storing your measurement data on-board seamlessly while the measurement is running. All internally stored measurements can be browsed and transferred back to the PC easily using PSTrace.

Main Specifications

channels	8 x [Working (WE), Sense (S), Counter (CE) and Reference electrode (RE) and Ground]
potential range	±3 V
max. compliance	±5 V
current ranges	1 nA to 10 mA (8 ranges)
max. current	±30 mA
FRA / EIS	10 μ Hz to 100 kHz when switching WE, RE and CE 10 μ Hz to 200 kHz when switching WE and RE+CE combined (2-electrode configuration)
electrodes	WE, S, RE, CE, and Ground, 2 mm banana plugs

See page 9 for more detailed system specifications.

Cell Configurations

The internal multiplexer is designed for use up to 128 channels with 2-, 3- or 4- electrode sensors or cells.

The multiplexer can be used with different electrode or sensor configurations:

- 1. Eight separate cells or sensors each with a working/sense, reference and counter electrode.
- 2. Eight separate cells or sensors each with a working/sense and combined reference and counter electrode.
- 3. Cell or sensor array with eight working/sense electrodes sharing one reference and one counter electrode.
- 4. Cell or sensor array with eight working/sense electrodes sharing one combined reference/counter electrode.

In all configurations the cells can be multiplexed, leaving the nonselected working electrodes either at open circuit (individually floating) or at Ground potential.

When in configurations 3 and 4, the unselected channels are switched to Ground, they will have the working electrode's potential. This is since the active WE is always at Ground potential.

You can easily change the hardware configuration of the multiplexer as part of the measurement settings in our PSTrace software or the PStouch app for Android.

MUX8-R2 Settings
Connect Sense to WE
Combine RE and CE
Use Common RE and CE on Channel 1
Unselected WE
 Disconnect WE (floating)
Switch WE to GND
The bardware

The hardware configuration can be set in PSTrace.

Connectors

The EmStat4 MUX has the following connectors:

Connector	Function
AUX	Can be used to control an external switch or stirrer or to measure an auxiliary input like temperature.
Link	Connects to Input of next multiplexer, for daisy- chaining multiple multiplexers.
USB-C	For providing extra power in case more than two multiplexers are connected to a single instrument.
Channel 1-4	Connects to WE, RE and CE of channels 1-4.
Channel 5-8	Connects to WE, RE and CE of channels 5-8.

Adding more channels

The number of available channels can be increased by connecting one or more MUX8-R2 multiplexers to the EmStat4 MUX. The additional multiplexers are daisy chained through the Link to Input of each successive multiplexer. The software automatically detects the total number of channels available.

Magnetic feet

The magnetic feet on the EmStat MUX8-R2 and magnets embedded in the op side of the MUX8-R2 multiplexers ensure a solid and stable stack of instruments.

Cell Connection Options

Option A (default):

The channels are divided in two sets of four sensor cables joined with a D-SUB connector.

Order code: [CBL-MUX08R2-SNS-5S]

Option B:

The cable here shown at the right can be used in case the multiplexer needs to be connected to a fixed setup by means of soldering or screw-terminals.

Order code: [CBL-MUX08R2-HD]

Option C:

You can also connect one or two screwterminals directly in the multiplexer.

Order code: [MUX08R2-ST]

Option D:

The SPE adapter for our multiplexer allows you to connect 8x Screen Printed Electrodes (SPE's). The pitch of the SPE connector is 2.54 mm and compatible with the most popular brands of SPE's.

Order code: [MUX08R2-SPE

Supported Techniques

The EmStat4 MUX supports the following electrochemical techniques.

Alternating Mode

In **sequential** mode each channel is set before the next measurement starts. In **alternating** mode, the channels are quickly scanned during each interval time giving a virtual-simultaneous measurement across the selected channels.

Techniques marked with an \bigcirc can be used in Alternating mode.

Voltammetric techniques

 Linear Sweep Voltammetry Cyclic Voltammetry 	LSV
 Fast Cyclic Voltammetry AC Voltammetry 	FCV ACV
Pulsed techniques	

	Differential Pulse Voltammetry	DPV
	Square Wave Voltammetry	SWV
-	Normal Pulse Voltammetry	NPV

These methods can all be used in their stripping modes which are applied for (ultra-) trace analysis.

Amperometric techniques

	Chronoamperometry Zero Resistance Amperometry Chronocoulometry MultiStep Amperometry Fast Amperometry Pulsed Amperometric Detection	CA ZRA CC MA FAM PAD	000
Galvar	nostatic techniques		
÷	Linear Sweep Potentiometry Chronopotentiometry MultiStep Potentiometry Open Circuit Potentiometry	LSP CP MP OCP	0 0
Other			
•	Mixed Mode	MM	
	Potentiostatic/Galvanostatic Impedance spectroscopy at fixed frequency or frequency scan vs o fixed potential or fixed current o scanning potential or scanning current o time	EIS/GEIS	
•	Fast EIS/GEIS Very low interval fixed-frequency measurements	FEIS/FGEI	S

Measurement Specifications

	Parameter	Min	Max
All	 Conditioning time 	0	4000 s
	 Deposition time 	0	4000 s
(unless	 Equilibration time 	0	4000 s
specified)	 Step potential 	0.100 mV	250 mV
	 N data points 	3	1 000 000
• NPV	 Scan rate 	0.1 mV/s (100 µV step)	1 V/s (5 mV step)
• DPV	 Pulse time 	0.4 ms	300 ms
• SWV	 Frequency 	1 Hz	1250 Hz
• LSV • CV	 Scan rate 	0.01 mV/s (100 µV step)	500 V/s (200 mV step)
	 Scan rate 	0.1 mV/s (100 µV step)	500 V/s (50 mV step)
• FCV	 N averaged scans 	1	65535
	 N equil. scans 	0	65535
	 Interval time 	50 ms	4294 s
- DAD	 Pulse time 	1 ms	1 s
• PAD	 N data points 	3	1 000 000 (> 100 days at 10 s interval)
• CA	 Interval time 	0.4 ms	4294 s
• CP • OCP	Run time	1 ms	> year
	 N cycles 	1	20000
- MM - MA	N levels	1	255
• MP	 Level switching overhead time 	~1 ms (typical)	-
	 Interval time 	0.4 ms	4294 s
	 Interval time 	1 µs	60 s
• FAM	Run time	3 µs	34 days (60 s interval) 50 ms (1 µs interval)
	 N data points 	3	50000
• Fast EIS	Interval time between points at fixed frequency	~1 ms (typical)	-

The following table shows limits for some technique-specific parameters.

System Specifications

General	
 dc-potential range 	±3 V
 compliance voltage 	±5 V
 maximum current 	±30 mA
 max. data acquisition rate 	1M datapoints/s
 control loop bandwidth (stability setting) 	32 Hz, 320 Hz, 3.2 kHz, 30 kHz or 570 kHz
 current follower bandwidth 	23 Hz in 1 nA and 10 nA range 2.3 kHz in 100 nA and 1 uA range 230 kHz in 10 uA and 100 uA range > 500 kHz in ranges 1 mA and higher

Potentiostat (controlled potential mode)		
 applied potential resolution 	100 µV	
 applied potential accuracy 	\leq 0.2% ±1 mV offset	
 current ranges 	1 nA to 10 mA (8 ranges)	
 measured current resolution 	0.009% of range (92 fA on 1 nA range)	
 measured current accuracy 	< 0.2% of current ±20 pA ±0.2% of range	

Galvanostat (controlled current mode)		
 current ranges 	10 nA, 1 uA, 100 uA, 10 mA (4 ranges)	
 applied dc-current 	±3 * range	
 applied dc-current resolution 	0.01% of range	
 applied dc-current accuracy 	< 0.4% of current ±20 pA ±0.2% of range	
 potential ranges 	50 mV, 100 mV, 200 mV, 500 mv, 1 V	
 measured dc-potential resolution 	96 μV at ±3 V (1 V range) 48 μV at ±1.5 V (500 mV) 19.2 μV at ±0.6 V (200 mV) 9.6 μV at ±0.3 V (100 mV) 4.8 μV at ±0.150 V (50 mV)	
 measured dc-potential accuracy 	\leq 0.2% potential, ±1 mV offset	

Optional: FRA / EIS (impedance measurements)		
 frequency range 	10 μ Hz to 100 kHz when switching WE/S, RE and CE 10 μ Hz to 1 MHz when switching WE/S and RE+CE combined (2 electrodes configuration)	
 ac-amplitude range 	1 mV to 900 mV rms, or 2.5 V p-p	

Optional: GEIS (galvanostatic impedance measurements)		
 frequency range 	10 µHz to 100 kHz	
 ac-amplitude range 	0.9 * range A rms	

Electrometer	
 electrometer amplifier input 	> 1 TΩ // 10 pF
 bandwidth 	500 kHz

Other	
 electrode connections 	8x [WE, S, RE, CE, and ground] default with 2 mm banana pins and croc clips
power + communication	USB-C
housing	aluminium body: 13.8 x 12.1 x 3.7 cm ³
• weight	500 g
 internal storage space 	500 MB, equivalent to >15M datapoints or ~1000 measurement files (whichever comes first)

Multiplexer

 number of channels 	8 (up to 128 channels when adding more MUX8-R2 multiplexers)
 on resistance for WE 	1.5 Ω typical
 charge injection for WE 	20 C typical
 leakage current 	< 55 pA (20 pA typical) at 25 °C
 switching time 	2 ms
 switching time when alternating 	25 ms (min. 0.5 s interval time when alternating over 8 channels)

Standard EmStat4 MUX Kit

A standard EmStat4 MUX kit includes a rugged carrying case with:

- EmStat4 MUX
- USB-C cable
- 1 meter cell cable with 2 mm banana pins
- 4 or 5 croc clips
- Dummy Cell

Also included:

- PSTrace software for Windows (on USB drive)
- Manual (hardcopy)
- Quick Start document
- Calibration report

PSTrace: Software for Windows

The EmStat4 MUX operates seamlessly with PSTrace, a free software compatible with all our potentiostats. Additionally, all future updates are provided at no cost.

PSTrace is designed to get the most out of your instrument right after installation, without going through a long learning period. It has three modes:

- 1. **Scientific mode**, which allows you to run all the techniques our instruments have to offer;
- Corrosion mode, suitable for corrosion analysis with corrosionists terminology and specific curve operations;
- 3. **Analytical mode**, designed for use with (bio)sensors and allows you to do concentration determinations.

Unselected WE

Oisconnect WE (floating)

Switch WE to GND

Channel 6

Channel 8

Scripting

The intuitive script editor allows for easily creating a sequence of measurements or other tasks, by means of dragging and dropping actions in a list.

cript	Comments	
Commo	n Advanced	
Electro	ochemistry	Cell
Me	easurement	On
	Cell	Find peaks ?
	SetCurrent	SetPotential Mode: Use window V
🧷 R	leadCurrent	1.000 V
	SetPotential	Wait Number of peaks: 1 -
	10	5 seconds Window for Peak 1
👱 ne	adrotential	Measurement Left: -0.200 Right: 0.200
Generi	New Plet	FourPoise (DPV)
	NewFlot	- Thureaks
	Wait	
	Repeat	
2	FindPeaks	
	FastMode	
Extern	al IO	Output will be saved in:
	SetChannel	C:\Users\Niels van Velzen\CloudStation\PSData\scriptou
N	extChannel	
	revChannel	
	Stirrer	
	SetAnalog	
🧷 Re	eadAuxiliary	Remove

Equivalent Circuit Fitting on EIS data

Use the graphical editor to draw the equivalent circuit or enter the CDC directly.

Other functions in PSTrace

- Concentration determination
- Advanced peak search algorithms
- Open your data in Origin and Excel with one click of a button
- Save all available curves, measurement data and methods to a single file
- Load measurements from the internal storage
- Direct validation of method parameters
- Run custom MethodSCRIPTS™

Integration with third-party software

- Excel
- Origin
- Matlab
- ZView

Minimum System Requirements

- Windows 7, 8, 10 or 11
- 1 GHz or faster 32-bit (x86) or 64-bit (x64) processor
- 2 GB RAM (32-bit) or 4 GB RAM (64-bit)
- Screen resolution of 1280 x 800 pixels

> See for more information: www.palmsens.com/pstrace

EmStat4 MUX works with MethodSCRIPT™

The MethodSCRIPT[™] scripting language is designed to integrate our instruments and potentiostat (modules) effortlessly in your hardware setup, product, or experiment.

MethodSCRIPT[™] gives you full control over your potentiostat. The simple script language is parsed on-board the instrument and allows for running all supported electrochemical techniques, making it easy to combine different measurements and other tasks.

MethodSCRIPT can be generated, edited, and executed in PSTrace.

MethodSCRIPT features include:

- Multiplexer control
- (Nested) loops and conditional logic support
- User code during a measurement iteration
- Exact timing control
- Simple math operations on variables (add, sub, mul, div)
- Digital I/O, for example for waiting for an external trigger
- Logging results to internal storage or external SD card
- and many more...

2 var c 3 vac n 4#Select bandwidth of 40 for 10 points per second 5 set_max_bandwidth 40 6#Set current range to 1 mA 7 set_range ba 1m 8 #Enable autoranging, between current of 100 uA and 1 mA 9 set_autoranging ba 100u 1m 10 #Turn cell on for measurements 11 cell on 11 cell_on
12 #equilibrate at -0.5 V for 5 seconds, using a CA measurement
13 meas_loop_ca p c -500m 500m 5
14 pck_start
15 pck_add p
16 pck_add c
17 pck_end
18 endloop
19 #Start LSV measurement from -0.5 V to 1.5 V with steps of 16 19 #Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV 20 #and a scan rate of 100 mV/s 21 meas_loop_lsv p c -500m 1500m 10m 100m 22 #Send package containing set potential and measured WE current. #Send pack pck_start pck_add p pck_add c pck_end *Abort if 23 24 25 #Abort if current exceeds 1200 uA if c > 1200u 26 27 28 20 abort 30 endloop 31 #Turn off cell when done or aborted 32 on_finished: 33 cell_off 34 Online support on MethodSCRIPT

Write your own software and integrate (generated) MethodSCRIPTs. No libraries needed.

MethodSCRIPT is parsed on-board the instrument. No DLLs or other type of code libraries are required for using MethodSCRIPT[™]

Code examples are available for:

> See for more information: www.palmsens.com/methodscript

Software Development Kits for .NET

Develop your own application in no time for use with any PalmSens instrument or potentiostat (module). Our SDKs are free of charge.

There are three PalmSens Software Development Kits (SDKs) for .NET. Each SDK can be used with any of our instruments or OEM potentiostat modules to develop your own software. The SDK's come with a set of examples that shows how to use the libraries. PalmSens SDKs with examples are available for the following .NET Frameworks:

- WinForms
- Xamarin (Android)
- WPF

Each SDK comes with code examples for:

- Connecting
- Controlling the multiplexer
- Running measurements and plotting data
- Manual control of the cell
- Accessing and processing measured data
- Analyzing and manipulating data
- Peak detection
- Equivalent Circuit Fitting on impedance data
- Saving and loading files

/// Commary>
/// Initializes the EIS method
/// </summary>
Ireference
private void InitMethod()

_methodEIS = new ImpedimetricMethod(); _methodEIS.ScanType = ImpedimetricMethod.enumScanT _methodEIS.Potential = 0.0f; //0.0V DC potential _methodEIS.Eac = 0.01f; //0.01V RMS AC potential a _methodEIS.FreqType = ImpedimetricMethod.enumFrequ _methodEIS.MaxFrequency = 1eSf; //Max frequency is _methodEIS.MinFrequency = 10f; //Min frequency is _methodEIS.nFrequencies = 11; //Sample at 11 diffe

_methodEIS.EquilibrationTime = 1f; //Equilabrates _methodEIS.Ranging.StartCurrentRange = new Current _methodEIS.Ranging.MinimumCurrentRange = new Curre _methodEIS.Ranging.MaximumCurrentRange = new Curre

See for more information: www.palmsens.com/sdk

PalmSens BV has more than 40 distributors around the world. Please contact us at **info@palmsens.com** or go to our website to get in touch with a distributor in your region.

Please do not hesitate to contact PalmSens for more details: info@palmsens.com

PalmSens BV The Netherlands www.palmsens.com

DISCLAIMER

Changes in specifications and typing errors reserved. Every effort has been made to ensure the accuracy of this document. However, no rights can be claimed by the contents of this document.

© Copyright PalmSens BV, 2025