

Electrochemical Biosensors

Dr. Andreas Schreiber, Dr. Martin Trotter

July 2025

Hahn-Schickard Freiburg, Germany

How can we support your biosensor development?

We support you in achieving your assay goals in terms of sensitivity, selectivity, portability and robustness.

We research and develop electrochemical biosensors based on **DNA probes** that can **detect nucleic acids, proteins, or small molecules** on **various electrode substrates**.

Technology portfolio

Electrode functionalization & characterization

- Thiolated probes on gold
- Covalent immobilization on carbon electrodes
- Blocking
- Determination of probe density

Microfluidic system integration

- Sample-to-answer system integration
- Mikrofluidic cartridge development

Assay development and optimization

- Probe-based DNA/RNA real-time amplification
- Sample-to-answer pathogen detection
- Multiplex detection
- Apta- and Immunosensing

Assay transfer

- Your assay from optical to electrochemical readout
- Your assay from expensive electrodes to cost-effective carbon electrodes

Technology portfolio

Electrode functionalization & characterization

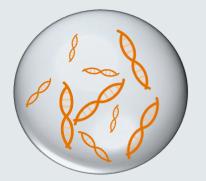
Grafting of DNA probes

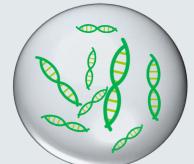
... for DNA/RNA detection

... for aptasensing

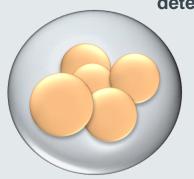
... and blocking against adsorption

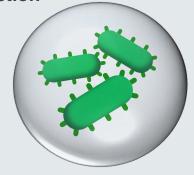
Characterization

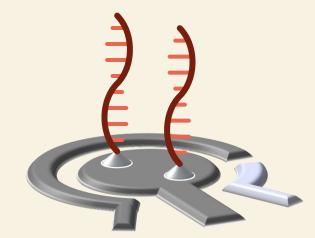

... of probe density


Real-time amplification detection

Probe-based


Assay development


DNA/RNA amplification

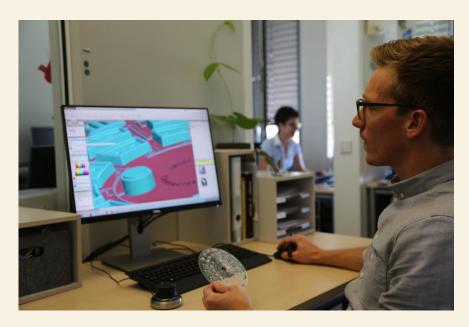


Multiplex Pathogen detection

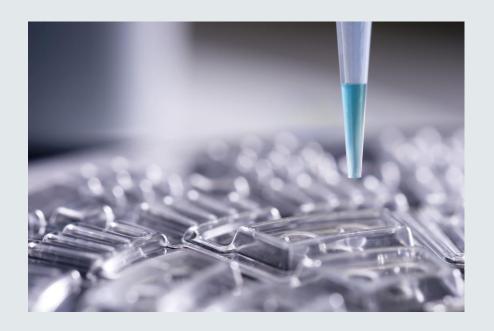
Carbon electrodes

Stable C-C bonds

Gold electrodes


i.a. Thiol-Au bonds

Technology portfolio


Microfluidic system integration

- Sample-to-answer system integration
- Microfluidic cartridge development

Assay transfer

- Your assay from optical to electrochemical readout
- Your assay from expensive electrodes to cost-effective carbon electrodes

Equipment and facilities

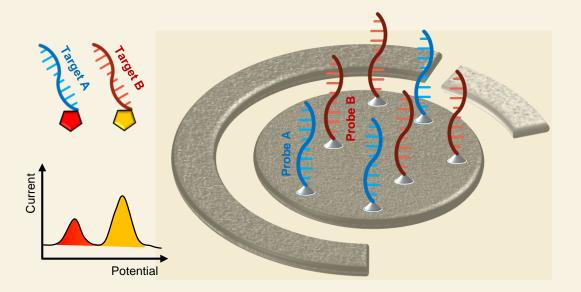
Facilities

- Biological safety laboratories (S2, S3**)
- Molecular biology lab
- Polymer prototyping

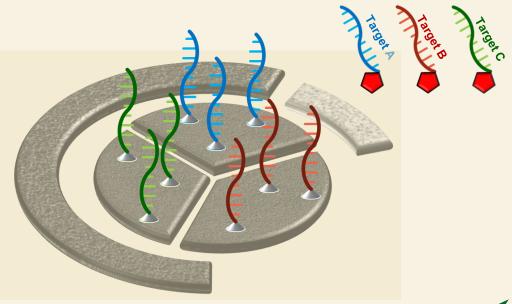
Equipment

- Electrochemical 48-well plate reader with temperature control for parallelized assay development and optimization
- Various other potentiostats
- Access to multiple devices for biological and material characterization

Biological safety laboratories (S2, S3**)


48-well plate and electrochemical plate cycler from Easy Life Science

Example multiplex detection: Analyze more targets in your same sample


Label-based multiplexing

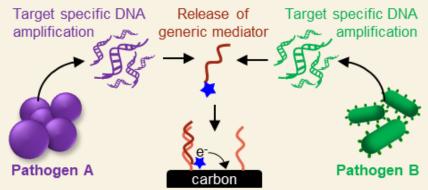
- Multiple labels per working electrode
 - Discrimination via redox potential
- Works with commercial electrode layouts
- Multiplies detection capabilities on single electrode

Electrode-based multiplexing

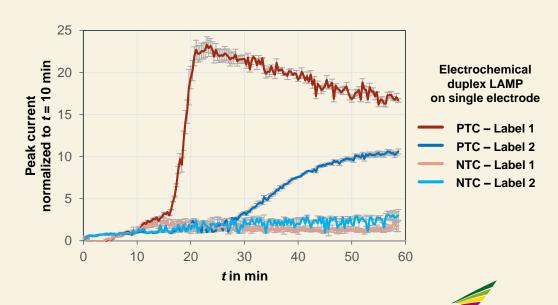
- Multiple working electrodes (array)
- One label per working electrode
- Custom electrode layouts necessary

Example: Pathogen detection using loop-mediated isothermal amplification (LAMP)

Electrochemical real-time LAMP


- Isothermal DNA amplification
- Detection via "universal" solid-phase probes→ simple adaption to new targets
- Covalent probe immobilization on carbon electrode

Trotter et al. ACS Sens. 2025, 10, 3 (https://doi.org/10.1021/acssensors.4c02492)


Multiplex LAMP detection

- Co-grafting of two solid-phase DNA probes on one electrode
- Amplification of target 1 leads to release of probe with label 1
- Amplification of target 2 leads to release of probe with label 2
- No unspecific signal in no template controls (NTC)

Kleinknecht et al. in preparation

Electrochemical real-time detection at universally functionalized electrode

Who we are

Hahn-Schickard is a research society dedicated to turning

Visions to Products

by supporting companies through all phases of research, development, and production ramp-up.

Hahn-Schickard in numbers (as of 2024)

- 3 institutes in 4 locations of southwest Germany
- 264 employees (2024)
- 12 spin-offs
- 164 patents

Contact details

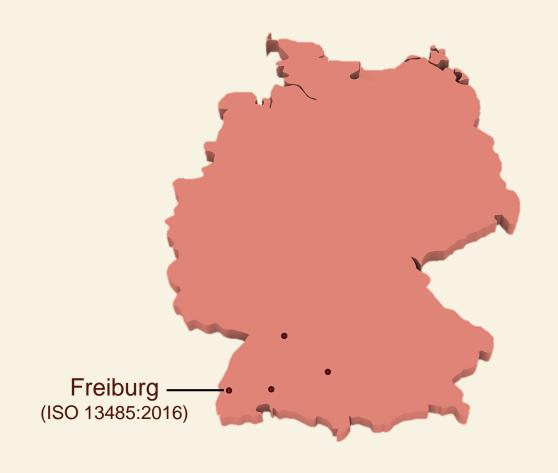
Dr. Andreas Schreiber

+49 (0)761 203 95418

Andreas.Schreiber@hahn-schickard.de

Linkedin

<u>Publications</u>


Dr. Martin Trotter

+49 761 203-73225

Martin.Trotter@hahn-schickard.de

Publications

Hahn-Schickard Website

