€ PalmSens

MethodSCRIPT™

MethodSCRIPT manual

MethodSCRIPT manual

Last document update: 2025-10-15

Table of Contents

ToINtrodUCHion © .« o 1
1.1.Terminology - . - . oo 1
2. Features. . . 2
2.1, Implemented features 2
2.2.8upported deviCes 3
3. Script format .. 4
3.1. Relation between MethodSCRIPT and communication protocol 4
4. MethodSCRIPT variables 6
4.1. MethodSCRIPT variables 6
4.2. Script command variables. 7
4.3. Measurement data package variables. 7
4.3, Invalid Values. 8
5. Interpreting measurement data packages 9
5.1, Package format 9
5.2. Variable sub package format 9
5.3. Package parsing example. 10
6. Measurement I00p COMMANGS. 12
B.1. Introduction 12
6.2. Measurement loop example 12
6.3. Measurement I00p OULPUL. 13
7.Variable types. . . 15
8. Scriptargument types 16
B . VA 16
8.2.AITAY . . 16
8.2.1. Array ACCESS SYNTaX . . - . . 17
8.3 lteral. 18
B.A4.VarType . . . 18
8.5. integer types (uint8, uint16, UiNt32) 18
8.6. condition eXpresSioNS 19
8.7 StING 20
8.7.1. Interpolated Strings 20
8.8. Optional arguments 21
9. Optional arguments 22
0.1, POIY_WE . . 22
0.2.add_MeaS. 23
O.3.NSCANS .« . . .o 24
9.4, NSCANS_AVT - - - o 25
9.5.nscans_equil. 26
0.6. Meta_MSK. . . 27
0.7 eis_tdd . . 27
Page | ii

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

0.8. €IS 0Pt . . . 29
0.9. €IS_aCAC 30
9.10. eis_dual_tdd 31
9171 eis_dual_acdC. 32
9.12. MS_BIS_aCAC. 33
Q3. WINAOW. . . 34
Q.14 filter_type . . . 35
018, 00D . 35
018, Or_log .« 36
10, TagS. 38
101, on_finished: 38
T1.Error handling. .« .« o oo 40
12. PGStat modes . . . 41
12.1. PGStat mode off. 41
12.2. PGStat mode low speed. 41
12.3. PGStat mode high speed 41
12.4. PGStat mode max range 41
12.5. PGStat mode poly_we (deprecated) 41
12.6. PGStat mode galvanostatic 41
13. Script command SUMIMANY .«o 42
13.1. Command SUMMANY o 42
13.2. MethodSCRIPT version oninstruments. 49
14. Script command descCription 50
14.1. Creating and manipulating variables 50
A VA 50
14.1.2. STOre_Var 50
41,8, COPY_VAN .« 51
T4.2.USING @Irays .« . . 51
TA2.0.ArMaY . .o 51
14.2.2. array_set (deprecated). 52
14.2.3. array_get (deprecated). 53
T4.2.4.8UDArray 54
14.3. Mathematical operations. 55
14.3.1.add var. .. 55
T4.3.2.8Ub_var 55
TA.B3.3. MULVAr . 56
T4.3.4.div_var. .. 56
T4.83.5. MOA_VAr « . . 57
T4.3.6. POW_VAN .. 58
TA.3.7.100.Var .. 58
14.4. Logical OperationsS. 59
1440, bit_and_var 59

N
age i £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

T4.4.2, DIt_Or_Var . . . 60
14.4.3. DIL_XOr_Var. . . . 60
14.4.4.Dit_Isl_var . . . 61
1445, Dit_ISr_var . . 61
14.4.6. Dit_invovar. ... 62
14.5. Data type CONVEISIONSo 62
1457 0nt_to _float. . . o 62
14.5.2. float_to_int. . .. 63
14.5.3. alter_vartype 63
14.6. Time, synchronization and hibernate. 64
T4.6.0. rtC_get. . 64
T4.6.2. aDOrt . . . 65
14.6.3. hibernate 65
T4.6.4. Walt . . 68
T4.6.5. SetiNt . 69
14.6.6. await_int 69
14.6.7. get_time . 70
14.6.8. timer_Start. 71
14.6.9. timer_get. 71
14.6.10. set_channel_SyNnC 72
14.7. Conditional operations 73
14.7.1.0f, elseif, else, endif. 73
14.8. LOOPp CONSIIUCES 73
T4, 8.1 00D . o 73
14.8.2. endlOOD . - .« 74
14.8.3. breakloop 75
14.9. Cell . o 75
14,00, SB . 75
14.9.2. 8610 . 75
14.9.8. Cell_ON. © 76
T14.0.4. cell_Off. 76
T4.9.5. 861 _aUX . . . 77
T4.10. MeaSUINg. .« .« . 77
141001, MEAS . - - o o 77
14.10.2. MEAS_MS_EIS . - . . 78
14.10.3. meas_fast_Cv 80
14.10.4. meas_fast_Ca 83
T4.10.5. MEAS_SCP - - - - o 84
1411, Measurement I00PS 86
14410, set_scan_dir - .. 86
14.11.2. Meas_loOp_ISV. . . . 86
14.11.3. Meas_loop_acCV 88
Page | iv

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

141714, Meas_loop_ISP 89
14.11.5. Meas_loOp_CV. . .. 90
14.171.6. Meas_loop_dpV. . . . 91
14117, MeaS_I00D_SWV. . . . 93
14.11.8. MeaS_l00P_ NPV . .« . . 94
14.11.9. Meas_lo0P_Ca. 95
14.11.10. meas_loop_ca_alt_muxX. 96
141111, mMeas_l00P_CP. - - . o 98
14.11.12. meas_loop_Cp_alt_muX. 99
141113, meas_loop_pad. 101
141114, Meas_lO0OP_0CP. 102
14.11.15. meas_loop_oCp_alt_muX. 103
T4.11.16. Meas_l00OP_EIS 104
141117, meas_loop_eis_dual 106
14.11.18. Meas_loOp_gEIS 108
1412, Script OUTPUL. © . o 109
14120, pek start . . . 109
14.12.2. pck_add . .. 110
T4.12.8. PCK_ENA .« 110
14124 fille_Open . . . 111
14125 Mile_Close 111
14.12.6. set_script_output. 112
T4.12.7.8end_StNG 112
1443.Ranging - . . .o 113
14.18.1. set_pot_range (deprecated). 113
14.13.2. set_cr(deprecated) 114
1413.3. 86t range - . . 114
14.18.4. set_range_MINMaX 116
14.13.5. set_autoranging. 117
14.13.6. trim_enable 118
1414, PGStat . . 119
14141, set_acquisition_fraCc. 119
14.14.2. set_acquisition_frac_autoadjust. 120
T414.3. Set_ir_COMP. 121
14144, set_pgstat_chan 122
14.14.5. set_poly_we_mode (deprecated). 122
14.14.6. set_pgstat_mode 123
14.14.7. set_bipot_mode 123
14.14.8. set_bipot_potential 124
14.14.9. set_max_bandwidth 124
1415, GPIO . . 125
T4.15.1.8et_gpio_CIg 125
Page | v

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

14.15.2. set_gpio_pullupo 126
T4.15.3.86t_gPIO - .« 126
14154, 9et_gpio . .« 127
14.15.5. set_gpio_mMSK . . . 127
14.15.6. get_gpio_MSK 128
TAA6. 120 129
T416.1.02C_CONTG -« 129
14.16.2. 12c_write_byte 129
14.16.3.12c_read_byte 130
T416.4.12C_WrIte 131
1416.5.02C_read o 132
14.16.6. i2c_write_read 133
1417, MURIDIEXEIS . . . 134
14471, MUX_CONFIg - . . 134
14.17.2. mux_get_channel_count 135
1447.3. mux_set_channel 136
TAA8. MISC . . oo 136
14181, notify_led. 136
14.18.2.smooth .« . .o 138
14.18.3. peak_detect 139
T418.4. 066D . . 140
1418.5. battery_perc 141
T418.6. QEt_PrOgreSS . . o o 141
1448.7. linear_fit. . 142
T4.18.8. MeaAN. . . . 143
T418.9. QroSCaN .« . 144
14.19. Display 145
1490 display_draw 145
14.19.2. display_Clear 146
1419.3. display_text 146
14.19.4. display_iCON. 146
14.19.5. diSPlay_progress 147
14.19.6. display_btNs . . . 148
14.19.7. display_iNp_NUm . . . 149
14.19.8. display_scroll_add 149
14.19.9. display_scroll_get 150
14.19.10. display_keyboard 151
15. MethodSCRIPT examples 152
161, EIS example . . . o 152
15.2. LSV example . . . 152
15.3. SWV example 154
156.4. Fast GV example. 155
Page | vi

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

15.5. Fast CAexample 157
15.6. SCP example 158
15.7. 12C example — temperature Sensor 160
15.8. PC example — real time CloCK 162
15.9. C example — EEPROM 164
16. Document version Changes 167
Version 1.1 Rev 1 167
Version 1.1 Rev 2 . 167
Version 1.1 ReV 3 . . 167
Version 1.1 ReV 4 167
Version 1.2 Rev 1 167
Version 1.2 Rev 2 168
Version 1.3 Rev 1 . 168
Version 1.4 Rev 1 . 169
Version 1.5 Rev 1 170
Version 1.6 Rev 1 171
Version 1.6 ReV 2 . . 171
Version 1.7 Rev 1 . 171
Version 1.8 Rev 1 . 172
Appendix A: Error COABS 173
Appendix B: Device-specific information. 181
B.1. PGStat mode properties. 181
B A NEXUS . o 181
B.1.2. EmStatd HR . . . 181
B.1.3. EmStatd LR .. . 182
B.1.4. EmStat Pico 182
B.1.5. Sensit Wearable 183

B.2. EIS properties. 183
B.3. Cumrent ranges 184
B34 NEXUS . . . 184
B.3.2. EmStatd LR . . . 185
B.3.3. EmStatd HR . . . 186
B.3.4. EmMStat Pico 187
B.3.5. Sensit Wearable 188

B.4. Potential ranges 189
B.5. Supported variable types for meas command - -« 190
B.6. Device I/O pin configurations 192
B.7. Measurement channels 193
Appendix C: Variable types 194

Page | vii

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 1. Introduction

The MethodSCRIPT scripting language is designed to improve the flexibility of the PalmSens potentiostat and
galvanostat devices for OEM users. It allows users to start measurements with arguments that are similar to the
arguments in PSTrace.

PalmSens provides libraries and examples for handling low level communication with the instrument and
generating scripts for supported devices.

Although the base of MethodSCRIPT is device-agnostic, there are differences between instruments that prevent

identical scripts from running on multiple devices. These differences are indicated in their appropriate chapter.
For documentation regarding detailed device capabilities please visit palmsens.com.

1.1. Terminology

PGStat Potentiostat / Galvanostat

EmStat PGStat device series by PaimSens

Cell The electrochemical system to be analysed

CE Counter Electrode

RE Reference Electrode

WE Working Electrode

SE Sense Electrode

Technique A standard electrochemical measurement technique
Iteration A single execution of a loop

SI International System of Units

Var (MethodSCRIPT) variable (usually command input)
Var [out] Variable that will be used for command output

Var [in/out]

HEX

Page | 1

Variable which value is both used as command input and output

Hexadecimal (= base 16) number (e.g. OxA1)

£ PalmSens

https://www.palmsens.com/

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 2. Features

2.1. Implemented features

e Measurements can be tested in PSTrace and then exported to MethodSCRIPT. This allows for convenient
testing of different measurements in PSTrace. The resulting MethodSCRIPT can then be easily imported as
a text file and executed from within the user application. PSTrace can also run custom scripts and is able to
plot the resulting measurement data.

e Support for the following electrochemical techniques!™:
e Chronoamperometry (CA)
e Fast Chronoamperometry (FCA)
e Linear Sweep Voltammetry (LSV)
e Cyclic Voltammetry (CV)
e Differential Pulse Voltammetry (DPV)
e Square Wave Voltammetry (SWV)
e Normal Pulse Voltammetry (NPV)
e Pulsed Amperometric Detection (PAD)
e Electrochemical Impedance Spectroscopy (EIS)
e (GGalvanostatic Electrochemical Impedance Spectroscopy (GEIS)
e Open Circuit Potentiometry (OCP)
e Chronopotentiometry (CP)
e | inear Sweep Potentiometry (LSP)
e Multi-Sine Electrochemical Impedance Spectroscopy (MSEIS)
e AC Voltammetry (ACV)
e Fast Cyclic Voltammetry (FCV)
e Stripping Chronopotentiometry (SCP)
e Storing of measurement data to onboard flash storage or SD card (if available on hardware).
e Support for BiPot / Poly WE.

e Different measurements can be chained after one another in the same script, making it possible to combine
multiple measurements without communication overhead.

e Support for user code during a measurement step.

e Up to 50 variables or arrays can be stored and referenced to from within the script. This allows for fast burst
measurements that are not slowed down by communication.

e A comprehensive set of MethodSCRIPT commands:
e Basic math operations (addition, subtraction, multiplication, division).
e Bitwise operations (and, or, xor, logical shift left/right, inversion).
e Conditional statements (if, elseif, else, endif).

e Support for loops.

P 2
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

e Synchronization commands (wait amount of time, wait until interval).
e Exact timing control.
e Script syntax will be verified when loading. Runtime errors are checked during execution.
e Autorun script at start-up from persistent memory.
¢ Low-power! mode (hibernate).

e Direct control over GPIO and the 12C interface for communication with external sensors and actuators.

2.2. Supported devices

e EmStat4
e EmStat Pico
e Sensit Wearable

e Nexus

[1] Not all techniques are supported by every instrument.
[2] The hibernate command is supported on all instruments, but only low-power on EmStat Pico and Sensit Wearable.

P 3
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 3. Script format

A script consists of a series of MethodSCRIPT commands. Each command starts with the command name and
is followed by zero or more arguments. Arguments are separated by one or more spaces (or tabs). Tabs and
spaces at the start and end of the line are ignored. Each command is terminated by a newline character ('\n",
ASCII code 10). Lines are limited to a maximum of 256 characters (including leading and trailing tabs and
spaces and the newline character). Empty lines (including lines only containing spaces and tabs) are not allowed
in MethodSCRIPT.

Comments can be added to a line by inserting a # character followed by the comment. A line containing only a
comment is allowed.

Since MethodSCRIPT v1.4, comments may take up a tiny amount of storage and execution
time to preserve line numbering.

The following small MethodSCRIPT example demonstrates the syntax.

This is a comment
wait 100m # Comments can also follow other text
if 1<2
send_string "Hello world"
endif

3.1. Relation between MethodSCRIPT and communication protocol

MethodSCRIPTs are sent to the device using the communication protocol, which is described in detail in a
separate document. Since there is a tight relationship between the two protocols, a brief summary and example
are given below.

To send a script to the device:

® Send e (for execute) or 1 (for load), followed by a newline character (\n).
® Send the MethodSCRIPT, line by line, each line followed by a newline character (\n).

® Send an empty line (\n) to denote the end of the script.

The e and 1 command, as well as the empty line, are not part of the MethodSCRIPT language but are part of the
device communication protocol.

The following example shows how the above MethodSCRIPT can be transmitted and executed using the device
communication protocol. In this example, the newline characters are rendered as \n.

P
agel £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

e\n
This is a comment \n
wait 100m # Comments can also follow other text\n
if 1< 2\n
send_string "Hello world" \n
endif \n
\n

The response of above script will be:

e\n
Thello world \n
\n

This response can be broken down into three parts:

1. The "e" followed by \n acknowledges that the execute command has been started.

2. The "T" followed by "hello world" is the output of the send_string command.

3. The empty line denotes the (successful) end of the script execution.

In the remainder of this document, only the MethodSCRIPT commands will be shown, without the e or 1
command, and without the empty line at the end. For readability, the \n will be omitted as well, except when
needed for clarification.

In some example scripts provided on the web or in other documents, the e is included as the

0 first line of the script. This allows for simple copy-pasting to a terminal application in order to
directly execute the script. It should be clear from context when the e command should be
added (if absent) or removed (if present).

P
a9el® £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 4. MethodSCRIPT variables

4.1. MethodSCRIPT variables

MethodSCRIPT variables represent numerical values that can be used within the script. They can be stored
internally either in floating-point format or as signed integer. Some commands only accept integer variables,
others will only accept floating-point variables (floats). In Chapter 14, Script command description, the
arguments of each command are documented. See the "Arguments" table in each command section.

Floating-point variables are represented as a signed integer value followed by an Sl prefix. See Table 1, “S| prefix
conversion table” for the available Sl prefixes. Only Sl prefixes available in this table can be used. For example, a
variable with a value of 100 and a prefix of m translates to a floating point value of 0.1 (= 100x10).

Table 1. SI prefix conversion table

a atto 1078
f femto 10°7°
p pico 1072
n nano 10°
u micro 10°
m milli 10
(space) (none) 10°
k kilo 10°
M mega 108
G giga 10°
T tera 10"
P peta 10"
E exa 10'®

Integer variables end with an i instead of an Sl prefix. If no prefix is provided, the number is assumed to be a
floating-point number. Integer variables can also be entered in hexadecimal or binary representation by prefixing
the value with @x or @b respectively. In this case, the i at the end of the number is optional. Hexadecimal and
binary representations are not allowed for floating-point variables.

Operations involving floating-point numbers often introduce (tiny) rounding errors.

e Consequently, testing for equality of floating-point numbers (e.g. testing if x == 3) might give
unexpected results. This makes floating-point numbers less suitable when an exact integer
value is expected, such as with counters in loops.

Integer variables are internally represented as 32-bit signed integers. They are not subject to
o rounding. However, integers have a limited range (roughly -2x10° to +2x10° and are
truncated when dividing. For example, when an integer number 10 is divided by 4, the result

P 6
a0e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

is 2 instead of 2.5.

Variables are not explicitly linked to a unit; instead the unit is implied by the associated Variable Type. Refer to
section Chapter 7, Variable types for more information.

Some number input parameters are not MethodSCRIPT variables. These include uint8, uint16 and uint32. For
such integer parameters, it is allowed but not necessary to append an i . They do not accept Sl prefixes.

The representation of MethodSCRIPT variables is different for scripts and script output. The
format of the output is described in Chapter 5, Interpreting measurement data packages.

4.2. Script command variables

Variables that are part of the MethodSCRIPT are represented as a signed integer followed by a prefix for
floating-point values, or i for integer values.

Integer variables

2551
OxFF
0611111111

Above example shows the integer value of the decimal number 255 using decimal, hexadecimal and binary
representation. In the example, the i is omitted in places where it is optional.

Float variables

500m

Above example shows the floating-point number 0.5 . It is stored internally as a floating-point number because it
has an Sl prefix.

4.3. Measurement data package variables

Variables that are part of a measurement data package are represented as 28-bit unsigned hexadecimal values
with an offset of 0x8000000 (= 2°7). A floating-point variable has one of the Sl prefixes shown in Table 1, “SI prefix
conversion table”, an integer variable ends with an i instead.

This format looks as follows:
HHHHHHHp

Where HHHHHHH is the hexadecimal value and p is the prefix character .

For example, a value of 0.01 would be represented as 800000Am and a value of -0.01 would be represented as
7FFFFFbm . PalmSens provides source code examples that showcase how to parse measurement data.

P
agel £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

To convert a MethodSCRIPT variable to a floating-point value, the following pseudocode can be used:

(HexToUint32(HHHHHHH) - 2A27) * SIFactorFromPrefix(p)

To convert a floating-point value to a MethodSCRIPT variable, the following pseudocode can be used:

Uint32ToHex(value) / SIFactorFromPrefix(p) + 2A27

Most programming languages have a built-in way of converting a HEX string to an integer. The function
SIFactorFromPrefix can be implemented by the user using, for example, a lookup table or a switch case to
translate the prefix character to its corresponding factor. Example implementations for several programming
languages and platforms can be found on our MethodSCRIPT Examples repository on GitHub.

4.3.1. Invalid Values

In the case that a value cannot be validly formatted, a nan will be returned instead. Such a value is formatted as
5 spaces followed by the text nan as follows:

nan

This value will be returned in the following cases:

® Afloat’s value is NaN

e A float’s value is not finite

® An integer is out of the printable range (-0x8000000 to 0x7FFFFFF)

P 8
a9e| £ PalmSens

https://github.com/PalmSens/MethodSCRIPT_Examples

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 5. Interpreting measurement data packages

5.1. Package format

Measurement packages consist of a header, followed by up to 33 variable packages (each with their own
variable type), followed by a terminating \n character. Consecutive packages are separated using a semicolon.
The package format is shown in Table 2, “Measurement data package format.”. Section 5.2, “Variable sub
package format” explains the format of the variable fields.

Table 2. Measurement data package format.

Variable Variable Variable

5.2. Variable sub package format
The format for a variable sub package is:

Table 3. Variable sub package format.

Metadata separator| Var 1 Metadata 1 | Metadata separator| Var 1 metadata X

ttHHHHHHHpP MV..V MV..V
Where:
tt Variable Type, represented as a base26 identifier that ranges from aa to jv . Variable Types

are always lower case. See Chapter 7, Variable types for more information.

HHHHHHHpP MethodSCRIPT package variable. See Section 4.3, “Measurement data package variables”
for more information.

, Metadata separator
M Metadata type ID, see Table 4, “Metadata types.”.
V..V Metadata value as a hexadecimal value, length is determined by metadata type

Metadata fields contain extra information about the variable. Each variable can have multiple metadata fields.
See Table 4, “Metadata types.” for the possible metadata types.

P 9
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Table 4. Metadata types.

o e v
1

1 Status

0=0K

1 = timing not met (custom commands in the measurement loop took too long for
the specified interval of the measurement)

2 = overload (>95% of max ADC value)

4 = underload (<4% of max ADC value)

8 = overload warning (>80% of max ADC value)

The overload and timing not met status flags mean that data is unreliable. When
overload warning or underload is set, the data is probably fine, but ranging should
be considered.

2 Range 2 Index of current range for current measurements (device-specific, see Section B.3,
“Current ranges”), or any other range for other measurements (e.g. potential range
for potential measurements). The range is just intended for diagnostic purposes,
and is not used in any calculations during parsing.

NOTE: Since originally only current ranges were implemented, this field is often
referred to as current range. However, it does not always apply to currents
anymore.

4 Noise 1 Noise level, intended for diagnostic purposes. The value is defined as 15 +
round(2 * log2(std / range)) . Where std is the standard deviation of the
measured samples, and range is the value of the reported measurement range.
Example: if the standard deviation is 16 pA, and the range is 1 mA, the noise level
is: 15 + round(2 * log2(16e-6 / 1e-3)) = 3.

0 The Overload flag is also affected by noise, and therefore may be set before the measured
value reached the overload value.

5.3. Package parsing example

A MethodSCRIPT device sends the following measurement data package:
Pda8000800u;ba8000800u,10,20B\n

This package contains two variables: da8000800u and ba8000800u, 10,208 .
The variable sub package da8000800u can be broken down as follows:

® The Variable Type is da, which corresponds to VT_CELL_SET_POTENTIAL .

® The value is 08000800 — 0x8000000 = 0x800 or 2048. The prefixis u which stands for micro. This makes the
final value 2048 pV (= 2.048 mV).

e This variable has no metadata.
The variable sub package ba8000800u,10,20B can be broken down as follows:

® The Variable Type is ba, which corresponds to VT_CURRENT .

P 10
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

® Thevalue is 08000800 — 0x8000000 = 0x800 or 2048. The prefix is u, which stands for micro. This makes the
final value 2048 UA (= 2.048 mA).

® This variable has two metadata packages, the first has an ID of 1 and a value of @, indicating it is a status
package with the value OK. The second metadata package has an ID of 2 and a value of @B . This indicates
that it is a current range with the current range 0x0B (= 11). For example, on the EmStat Pico, this refers to
the 5 mA current range. This current range is just for diagnostic purposes, and is not used in any
calculations during parsing.

P 11
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 6. Measurement loop commands

6.1. Introduction

Most measurement techniques are implemented as measurement loop commands. This means that the
command will execute one iteration of the measurement technique. After this, all MethodSCRIPT commands
within the measurement loop are executed. When all commands have been executed, the device waits for the
correct timing to start the next iteration of the measurement technique and the process begins again for the next
iteration.

It is the responsibility of the user to ensure there is enough time between measurement
iterations to execute the user commands inside the loop.

If the user code takes more time than there is available, the next iteration is started too late, which likely results in
less accurate measurement results. This will be reflected in the metadata (see Table 4, “Metadata types.”), by
setting the "timing not met" status flag, so it can be detected by inspecting the metadata. How much time is
available for user code depends on many factors and should be determined empirically. For very fast
measurement iterations it is recommended to keep the code inside the loop as short as possible so it does not
take too long.

Often the communication data rate determines the minimum interval time for a measurement
(r) loop. If timing errors are caused by communication, it could be a solution to store the
w measurement results in a MethodSCRIPT array, and transmit the data after the
measurement loop.

that will return all iterations at once. For example, a Fast CV measurement is performed

o In contrast to measurement loops, fast measurement techniques have dedicated commands
using the meas_fast_cv command.

Limitation:
[t is not possible to use a fast technique or another measurement loop inside of a measurement loop. However,
measurement loops can be used freely inside of a normal loop and vice versa.

6.2. Measurement loop example

Below is an example of a MethodSCRIPT containing a measurement loop. This works as follows:

® The first five commands (before the meas_loop_ca command) are executed only once. These commands
define the two variables that will be used in the loop, configure the potentiostat, and turn on the cell.

® The meas_loop_ca command starts a Chronoamperometry (CA) measurement. Based on the provided
arguments, this will apply a DC potential of 100 mV and perform a current measurement iteration every 200
ms.

e After the measurement iteration has been performed, the MethodSCRIPT commands inside the
measurement loop are executed. In this example, a data package is transmitted here, containing the set
potential and measured current.

® When the endloop is reached, the firmware checks if another iteration should be performed. If this is the
case, the script waits until it is time and then performs the next iteration.

®* When the last iteration has been completed, the script continues after the endloop command. In this

P 12
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

example the loop stops after 5 iterations since an interval of 200 ms and a total run time of 1000 ms was
specified.

var potential

var current

Select channel 0, set PGStat mode to low-speed and turn on the cell.

set_pgstat_chan 0

set_pgstat_mode 2

cell_on

Run a measurement loop for the Chronoamperometry (CA) technique.

meas_loop_ca potential current 100m 200m 1000m
The following commands are executed after each iteration (measurement).
pck_start # Start a new data packet.
pck_add potential # Add the 'potential' variable to the packet.
pck_add current # Add the 'current' variable to the packet.
pck_end # Close and transmit the data packet.
At the endloop command, the script execution halts until it is time
for the next measurement loop iteration.

endloop

6.3. Measurement loop output

The start of a measurement loop is always indicated by a line in the format MXXXX where XXXX is the technique ID
of the measurement loop (see Table 5). The end of a measurement loop is indicated by a line containing only an
asterisk (*). In general, the output of a measurement loop would like something like this:

General output format of a measurement loop.

MXXXX
...output of user commands inside the loop
...(usually the data packages)

*

When the above example script is executed, the output could look like this.

Example output of the above measurement loop.

Meoo7

PdaDF5CB18n;ba9699F74p,14,218,40
PdaDF5CB18n;ba9699F74p,14,218,40
PdaDF5CB18n;ba9699F74p, 14,218, 40
PdaDF5CB18n;ba9699F74p,14,218,40
PdaDF5CB18n;ba9699F74p,14,218,40

*

As explained in Chapter 5, Interpreting measurement data packages, daDF5CB18n denotes a variable of type
CELL_SET_POTENTIAL (i.e. the Set control value for WE potential) with a value of 0.099994392 [V]. Due to the

P 13
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

resolution of the DAC, the actual value is very close, but not exactly equal, to the specified value of 100 mV. The
actual used value is returned by the measurement loop commands so they can be used in futher calculations.

Table 5. Measurement technique ID.
T
0000 Linear Sweep Voltammetry (LSV)
0001 Differential Pulse Voltammetry (DPV)
0002 Square Wave Voltammetry (SWV)
0003 Normal Pulse Voltammetry (NPV)
0004 AC Voltammetry (ACV)
0005 Cyclic Voltammetry (CV)
0006 Chronopotentiometric Stripping
0007 Chronoamperometry (CA)
0008 Pulsed Amperometric Detection (PAD)
0009 Fast Chronoamperometry (FCA)
000A Chronopotentiometry (CP)
0008 Open Circuit Potentiometry (OCP)
000D Electrochemical Impedance Spectroscopy (EIS)
000F Galvanostatic Electrochemical Impedance Spectroscopy (GEIS)
000F Linear Sweep Potentiometery (LSP)
0010 Fast Cyclic Voltammetry (FCV)
0011 Chronoamperometry (CA) with alternating mux
0012 Chronopotentiometry (CP) with alternating mux
0013 Open circuit potentiometry (OCP) with alternating mux

0014 Dual electrochemical impedance spectroscopy (Dual EIS)

See Chapter 14, Script command description to see which devices support which
techniques.

Page | 14
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 7. Variable types

Variable types (VarTypes) offer some context to MethodSCRIPT variables. They commmunicate the type and/or
origin of the variable. They are also used as an argument to some functions to measure a specific type of
variable. For example, when the meas command is used, the type of variable to measure must be passed as an

argument.

A complete list of all defined variable types is listed in Appendix C, Variable types.

P 15
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 8. Script argument types

8.1. var

The argument var is a reference to a MethodSCRIPT variable. Variables can be changed during runtime. Before
a variable can be used, it first has to be declared to tell the instrument to reserve some memory. This can be
done using the var command (see Section 14.1.1, “var”). Variable names must start with a lower case letter ('a’
- 'z") and can for the rest consist of more lower case letters, numbers or underscores '_'

For example, this allocates a few variables:

var a
var aa

var variable_ 3

var some_descriptive_name

The variable names are translated in the parsing stage so that their length or the amount of variables does not
affect runtime. When choosing variable names, take the following into account: - The parser can only remember
~300 characters for all variable names combined. - Lines have a maximum length of 256 characters, this can be
important for commands with multiple parameters.

There maximum amount of variables is 50. Variables are preserved during hibernation and exist for the duration
of the script

Allocate variable with name my_number
var my_number
Store PI in it
store_var my_number 3141m ja
Send the content of var my_number to the user
pck_start
pck_add my_number
pck_end

8.2. array

For storing more than one element, arrays can be used. This can be used with for example I°C data, fast
techniques or generic measurements. Like variables, arrays have to be defined before they can be used (see
Section 14.2.1, “array”). Interaction with arrays happens via their reference (just like variables). Arrays and
variables denote distinct types, and cannot generally be substituted for one another in command arguments.

An example of defining an array, filling it with (squared) numbers and printing the content:

var temp

var i

store_var i 01 ja

Define our array with size 10
array list_of_numbers 10

P 16
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

#
Fill the array
#
loop i < 10
copy_var i temp
mul_var temp temp
copy_var temp list_of_numbers[i]
add_var i Ti
endloop
#
Print the content to the user
#
store_var i 01 ja
loop i < 10
copy_var list_of_numbers[i] temp
pck_start
pck_add i
pck_add temp
pck_end
add_var i Ti
endloop

Table 6. Total storage for array elements

Instrument Max array elements

EmStat Pico 4096
Sensit Wearable 4096

EmStat4 50000

Nexus 50000
On the EmStat Pico and Sensit Wearable, the contents of arrays are not preserved during
hibernate, so they may contain random data afterwards.

8.2.1. Array Access Syntax

Array elements may be accessed with square bracket notation. Elements are zero-indexed, and the value used
to index the array must be an integer (either an integer literal or an integer variable). Array accesses may not be
nested - i.e. the index may not also be an array element.

An array element accessed in this way may be used in lieu of ordinary variables in command arguments,
wherever a variable would be accepted.

array a 100 # Make the 100-element array "a
...

The initialisation of "a"s values is omitted
...

Allowed:

P 17
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

The 11th element will be used as the argument.
set_e a[101]
#
The 12th element will be used as the argument.
var x
store_var x 111 aa
set_e a[x]
#
Write out all the items in the array
var i
store_var i 0i aa
loop i < 100i

send_string f"{a[i]}"

add_var i 1i
endloop
#
Not allowed:
"set_e" takes a variable, not an array.
set_e a
#
Omitting the "i" after "10" makes it a float,
but indices must be integers.
set_e a[10]
#
Array accesses may not be nested.
set_e a[a[0i]]

8.3. literal

A literal is a constant value argument, it cannot change during runtime.

8.4. VarType

See Chapter 7, Variable types.

8.5. integer types (uint8, uint16, uint32)

These are integer constants, these cannot be changed and do not accept Sl prefixes. Minimum and maximum
values for these variables are as follows:

Table 7. Data types

uint8 0 255

uint16 0 65,5635

uint32 0 4,294,967,295
Page | 18

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

8.6. condition expressions

Condition expressions are used in the MethodSCRIPT commands if, elseif and loop . A condition expression
always consists of an operator with two operands, in the form operand1 operator operand?2, for example i <
10 . The operators and operands must be separated by at least one space or tab. Both operands can be either a
MethodSCRIPT variable or an (integer or floating-point) literal. The following operators are supported:

P 19
age| £ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

== Equal to
1= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
& Bitwise AND
| Bitwise OR
Notes:
® The comparison operators (==, =, >, >=, <, <=) support integer and floating-point numbers. If any of the

operands is a floating-point number, the other operand is converted to floating-point if neccesary.
® The result of any comparison with NaN (not-a-number) is always false.
® The bitwise operators (& and |) only support integer numbers.
e For bitwise operators, the condition is true if (and only if) the result of the bitwise operation is non-zero.

e For unsupported operations (i.e. a bitwise operation on a floating-point number), the condition is always

false.
Beware of unexpected results due to rounding errors when using floating-point numbers. For
example, the expression 100000001 == 99999999i is true, because the integer number
o 999999991 will be converted to floating-point format. In this case, both floating-point
numbers are rounded to 100000000 and consequently the comparison evaluates to true.
However, the expression 1000000011 == 99999999i is false, since both operands are

integers, which are not rounded.

Do not forget to add the i suffix for integer literals (see Section 4.2, “Script command

e variables”) when using bitwise operators. For example, the condition i & 1 will always be
false, because 1 is a floating-point number, and bitwise operations on floating-numbers are
not supported. However, the condition i & 11 will be true if bit O of variable i is set.

8.7. string

A sequence of characters, i.e. a piece of text. Strings are enclosed in double quotes, e.g. "example string".
Strings may only consist of printable ASCII characters (ASCIl code 32-126), excluding the quotation mark ("),
since that is used as delimiter.

In MethodSCRIPT, strings are always literals (constants). There are no commands to store or modify strings.

8.7.1. Interpolated strings

MethodSCRIPT does support limited string interpolation, allowing the values of variables to be included within a

P 20
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

string.
Interpolated strings are denoted by the letter f immediately preceding the opening quotation mark. Variables
that are to be included in the string are surrounded by curly braces, e.g. {varname}. Curly braces that do not

contain a valid variable name will cause an error.

The following example demonstrates how to print the value of a MethodSCRIPT variable:

var x
store_var x 101 ja
send_string f"x = {x}"

This will print the string x = 10.

A backslash (\) may be used to escape the following character, ensuring that it is included verbatim. The
backslash itself will not be included in the output string.

Modifying the example above:

var x
store_var x 101 ja
send_string f"x = \{x}"

This will print the string x = {x} since the backslash escaped the opening curly brace, causing it to be included
as-is rather than being interpolated.

If a backslash is required in the outputted string, write it as a double backslash (\\). The first backslash will
escape the second, causing it to appear verbatim in the output:

var x
store_var x 101 ja
send_string f"x = {x} and then a backslash \\"

This will print the string x = 10 and then a backslash \.

8.8. Optional arguments

Some commands can have optional arguments to extend their functionality. For example most techniques
support the use of a second working electrode (bipot or poly_we). See Chapter 9, Optional arguments for
detailed information.

P 21
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 9. Optional arguments

Optional arguments are added after the last mandatory argument. The format is cmd_name(arg1 arg2 arg3 ..).

9.1. poly_we

MethodSCRIPT =1.1
Supported instruments EmStat Pico, Sensit Wearable, Nexus
Measure a current on a secondary WE. This secondary WE uses the CE and RE of the main WE, but can be

offset in potential from the main WE or RE. WE’s that are used as poly WE must be configured as such using
the command set_pgstat_mode 5 for the channel the WE belongs to.

Arguments
I
Channel uint8 Channel of the additional working electrode.
Output current var [out] Output variable to store the measured current in.

The following code example performs an LSV measurement and sends a data packet for every iteration. The
data packet contains the set potential (p), the measured current of the main WE (¢) and the measured current of
the secondary WE (b). The LSV performs a potential scan from -500 mV to +500 mV with steps of 10 mV at a
rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per second.

declare variable for output potential

var p

declare variable for output current of main WE
var ¢

declare variable for output current of secondary WE
var b

enable bipot on ch 1

set_pgstat_chan 1

set the selected channel to bipot mode
set_pgstat_mode 5

set bp mode to offset or constant
set_poly_we_mode 1

#f set offset or constant voltage

set_e 100m

set the current-range of the secondary WE
set_range ba Tu

switch back to do actual measurement on ch 0
set_pgstat_chan 0

set the main WE channel to low speed mode
set_pgstat_mode 2

set_range ba Tu

set_range_minmax da -500m 500m
set_max_bandwidth 500

set_e -500m

P 22
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

cell_on

wait 1

LSV measurement using channel @ as WET and channel 1 as WE2
WE2 current is stored in var b

meas_loop_lsv p ¢ -500m 500m 10m 100m poly_we(1 b)
pck_start

pck_add p

pck_add c

pck_add b

pck_end

endloop

cell_off

The optional argument poly_we has been deprecated and may be removed in future

é releases. Use the optional argument add_meas instead. The argument poly_we(1 b) is equal
to add_meas(1 ba b) and similar to add_meas(@ bb b) (the latter gives the same
measurement result but with a different VarType).

9.2. add_meas

MethodSCRIPT >1.6
Supported instruments EmStat Pico, Sensit Wearable, Nexus
Add an extra measurement to the command. This optional argument can be used multiple times for the same

command. Depending on the instrument, different signals can be measured in parallel see Section B.7,
“Measurement channels”

Arguments

N T
Channel uint8 PGstat channel to use.

Var type VarType The type of variable to measure, see Chapter 7, Variable types.

Output variable var / array [out] Output variable to store the measured data in. Must be an array if the

(float) loop outputs array data, such as for fast techniques.

This example shows measuring the potential (which can deviate from the set potential), and the temperature in a
CV measurement loop.

var p

var ¢

var m

var t

meas_loop_cv p ¢ @ -500m 500m 10m 1 add_meas(@ ab m) add_meas(@ ed t)
pck_start

pck_add p

pck_add c

P 23
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

pck_add m
pck_add t
pck_end
endloop

This example shows measuring the bipot current in a CV measurement loop.

array p 41

array c¢ 41

array b 41

var n

meas_fast_cv p ¢ n 0 100m -100m 10m 1 add_meas(@ bb b)

9.3. nscans

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform multiple potential sweeps (scans) during a Cyclic Voltammetry measurement, instead of sweeping only
once. When nscans is used, the cycle number will be printed at the start of every sweep. The number is
formatted as Cnnnn where nnnn is an integer ranging from 0000 to 9999 . A special character (-) is printed at the
end of every cycle. For the rest the output is the same as when nscans omitted. See output example below.

Arguments
e I
Number of scans uint16 The number of scans to perform (1 < n < 9999).

This example CV performs a potential scan from 0 V to -500 mV to 500 mV and back to 0 V with steps of 10
mV at a rate of 1 VV/s. Because of the nscans(2) parameter, this pattern is repeated two times.

meas_loop_cv p ¢ @ -500m 500m 10m 1 nscans(2)
pck_start

pck_add p

pck_add c

pck_end

endloop

Output for example with nscans 2

Mooo5
(0000
Pda8000000 ;ba9AE@ABCT,14,212,40

Pda899FAAINn; ba8100EADp, 14,212, 40

Page | 24
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

(0001
Pda8000000 ;ba9AE@ABCT,14,212,40

Pda899FAA9INn; ba8100EADpP,14,212,40

*

9.4. nscans_avg

MethodSCRIPT =1.4

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Average the measured currents of multiple scans in a Cyclic Voltammetry measurement, keeping the same array
length as when having only one scan.

Arguments
N I
Number of scans uint16 The number of scans to average (1-30000).

For example, the following meas_fast_cv command will perform 7 scans which are averaged together. The
result is stored in arrays p and i and printed using a loop.

Example

var ¢

var x

array p 5

array i 5

meas_fast_cv p i ¢ 0 -100m 100m 100m 10 nscans_avg(7)
store_var x 01 ja

loop x < ¢

pck_start meta_msk(0x00)

Add set potential to packet
pck_add p[x]

Add measured current to packet
pck_add i[x]

pck_end

add_var x 1i

endloop

The output contains 5 points, just like a scan without averaging would. In contrast with a regular scan without
nscans_avg, the currents are averages over 7 scans.

P 25
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Qutput

L

da8000000 ;baB801B85Cp
da20A34E8n;ba20C37E0p
da8000000 ;ba801B85Cp
daDF5CB18n;ba8018739n
da8000000 ;ba801DDOFp
+

9.5. nscans_equil

MethodSCRIPT =1.4

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform n amount of scans without measuring current, before the normal measured scans.

P 26
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments

N R

Number of scans uint16 The number of scans to perform during the equilibration phase.

The following example illustrates the use of nscans_equil performing 3 equilibration scans. Output format is the
same as without this optional parameter.

Example

meas_fast_cv p i ¢ @ -100m 100m 100m 10 nscans_equil(3)

9.6. meta_msk
MethodSCRIPT >1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Enable or disable metadata packages sent with the pck_add command. This can be used to reduce the amount
of data sent by disabling packages, making it possible to achieve higher data rates.

Arguments
N I
Metadata mask uint8 A bitwise mask used to enable/disable types of metadata packages.

0 = All metadata disabled

1 = Enable datapoint status package

2 = Enable current range package

Values can be added to enable multiple types of metadata.

This example measures a current and then sends two packages containing the measured current. The first
package will include the current range and status metadata. The second package will only include the status
metadata.

var a

set_pgstat_mode 2

meas 100m a ba

pck_start meta_msk(0x03)
pck_add a

pck_end

pck_start meta_msk(0x01)
pck_add a

pck_end

9.7. eis_tdd

MethodSCRIPT =>1.3

P 27
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Supported instruments EmStat4, Nexus

The eis_tdd optional parameter enables the transfer of time-domain data (TDD) for an EIS, GEIS, or MSEIS

measurement.
e This is not supported on the EmStat Pico and Sensit Wearable.
Arguments
I
Potential signal TDD array [out] The acquired time-domain data of the potential signal of one EIS
iteration or MSEIS measurement. Minimum size required is 4096.
Current signal TDD array [out] The acquired time-domain data of the current signal of one EIS
iteration. Minimum size required is 4096.
Number of samples var [out] The number of acquired data points (samples) for both signals.
Sampling frequency var [out] The frequency at which the data points are acquired for both signals.
Averaging mode uint16 Averaging mode. Future option, default = 0.

The following example performs an EIS measurement and sends the EIS result data packets followed by the
time-domain data for every iteration.

var
var
var
var
var
var
var
var g

array u 4096

array c 4096

set_pgstat_chan 0

set_pgstat_mode 3

set_max_bandwidth 200k

set_range_minmax da 0 @

set_range ba 59m

set_autoranging ba 59n 59m

cell_on

meas_loop_eis h r j 50m 200k 1 11 @ eis_tdd(u ¢ n s 0)
pck_start

pck_add h

pck_add r

pck_add j

pck_add s

pck_end

store_var i 0i ja

a wn D 2w o>

P 28
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

loop i < n
pck_start
pck_add u[i]
pck_add c[i]
pck_end
add_var i Ti
endloop
endloop
on_finished:
cell_off

9.8. eis_opt

MethodSCRIPT =>1.3

Supported instruments EmStat4, Nexus

The eis_opt optional parameter enables the user to control the acquisition properties for an EIS or GEIS
measurement.

e This is not supported on the EmStat Pico.

Arguments

R

Minimum acquisition var / literal The minimum time for acquisition (for frequencies > Min.Cycles /

time (float) frequency). Must be a positive value. Setting the value below 1 ms will
enable Fast EIS. Fast EIS enables performing EIS measurements as fast
as possible, at the cost of accuracy. At frequencies of 10 kHz and
above, the interval time is less than 1 ms.

Minimum nr. of uint8 The minimum number of cycles to acquire (for frequencies < 1/
cycles to acquire Min.Acg.Time). Must be a positive and non-zero value.

This example performs an EIS measurement with 10 ms minimal acquisition time and minimal 1 cycle to acquire.

var h

var r

var j

set_pgstat_chan 0
set_pgstat_mode 3
set_max_bandwidth 200k
set_range_minmax da 0 @
set_range ba 59m
set_autoranging ba 59n 59m
cell_on

meas_loop_eis h r j 50m 200k 1 11 0 eis_opt(10m 1)
pck_start

pck_add h

P 29
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

pck_add r
pck_add j
pck_end
endloop
on_finished:
cell_off

9.9. eis_acdc

MethodSCRIPT =1.3

Supported instruments EmStat4, Nexus

The eis_acdc optional parameter returns the AC and DC information for the potential and current signal.

o This is not supported on the EmStat Pico.

Arguments

e I

E_AC var [out] AC potential (in volts).
(float)

E DC var [out] DC potential (in volts).
(float)

I_AC var [out] AC current (in amperes).
(float)

I_DC var [out] DC current (in amperes).
(float)

Perform an EIS measurement and send the EIS result data packets followed by the E_AC, E_DC, I_AC, I_DC
values.

var
var
var
var
var
var
var
var
var
var
set_pgstat_chan 0

set_pgstat_mode 3

set_max_bandwidth 200k
set_range_minmax da 0 @

N Cc O a un O =~ " o

P 30
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

set_range ba 59m

set_autoranging ba 59n 59m

cell_on

meas_loop_eis h r j 50m 200k 1 11 @ eis_acdc(u ¢ n s)
pck_start

add frequency, Z-real, Z-imaginary to the data packet
pck_add h

pck_add r

pck_add j

add the E_AC,E_DC,I_AC,I_DC values to the data packet
pck_add u

pck_add c

pck_add n

pck_add s

pck_end

endloop

on_finished:

cell_off

9.10. eis_dual_tdd

MethodSCRIPT =1.7

Supported instruments Nexus

The eis_dual_tdd optional parameter enables the transfer of time-domain data (TDD) for an EIS dual
measurement. [t it similar to the eis_tdd optional parameter.

o This is not supported on the EmStat Pico.

Arguments

Potential signal TDD array [out] The acquired time-domain data of the potential signal of one EIS
iteration. Minimum size required is 4096.

Current signal TDD array [out] The acquired time-domain data of the current signal of one EIS
iteration. Minimum size required is 4096.

Third signal TDD array [out] The acquired time-domain data of the third signal of one EIS iteration.
Depending on the mode, this is the data of the BiPot, or second sense.
Minimum size required is 4096.

Number of samples var [out] The number of acquired data points (samples) for all signals.
Sampling frequency var [out] The frequency at which the data points are acquired for all signals.
Averaging mode uint16 Averaging mode. Future option, default = 0.

The following example shows the usage for an EIS dual measurement. A more complete example can be found
in eis_tdd.

P 31
a0e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

array p 4096
array c 4096
array b 4096
meas_loop_eis_dual 1 f z_r z_i b_r b_i 50m 200k 1 11 @ eis_dual_tdd(p ¢ b n fs 0)
store_var i 01 ja
loop i < n
pck_start

pck_add p[i]
pck_add c[i]
pck_add b[i]
pck_end

add_var i Ti
endloop

endloop

9.11. eis_dual_acdc
MethodSCRIPT >1.7

Supported instruments Nexus

The eis_dual_acde optional parameter returns the AC and DC information of the 3 measured signals. It it similar
to the eis_acdc optional parameter.

e This is not supported on the EmStat Pico.

Arguments

T

E_AC var [out] AC potential (in volts).
(float)

E_DC var [out] DC potential (in volts).
(float)

I_AC var [out] AC current (in amperes).
(float)

I_DC var [out] DC current (in amperes).
(float)

3_AC var [out] AC of third signal: BiPot, or second sense (depends on the mode).
(float)

3_DC var [out] DC of third signal: BiPot, or second sense (depends on the mode).
(float)

The following example shows the usage for an EIS dual measurement. A more complete example can be found
in eis_acdc.

P 32
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

meas_loop_eis_dual 1 f z_r z_i b_r b_i 50m 200k 1 11 @ eis_dual_acdc(e_ac e_dc i_ac i_dc
b_ac b_dc)

9.12. ms_eis_acdc
MethodSCRIPT >1.5

Supported instruments EmStat4, Nexus

The ms_eis_acdc optional parameter returns the AC and DC information for the E and | signal of a MSEIS
measurement. The user should make sure that the E_AC and I_AC argument are an array of sufficient length.

Table 8. Arguments

T I

E_AC array [out] E signal AC value for each harmonic in volts
(float)

E_DC var [out] E signal DC value in volts
(float)

I_AC array [out] | signal AC value for each harmonic in amperes
(float)

I_DC var [out] | signal DC value in amperes
(float)

Perform an MSEIS measurement and send the MSEIS result data packets followed by the E_AC and I_AC
arrays, and finally the E_DC and I_DC values.

array f 15

array r 15

array j 15

var i

var n

var s

array u 15

array ¢ 15

set_pgstat_chan 0
set_pgstat_mode 3
set_max_bandwidth 200k
set_range_minmax da 0 0
set_range ba 59m
set_autoranging ba 59n 59m
cell_on

meas_ms_eis f r j 10m 10 180m 2 ms_eis_acdc(u n ¢ s)
First send the MSEIS results
store_var i 0i ja

loop i < 15i

P 33
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

pck_start

pck_add f[i]
pck_add r[i]
pck_add j[i]
pck_end

add_var i 1i
endloop

Send AC voltage and current data for each harmonic
store_var i 01 ja
loop i < 15i
pck_start

pck_add u[i]
pck_add c[i]
pck_end

add_var i 1i
endloop

Send the DC voltage and current data
pck_start

pck_add n

pck_add s

pck_end

cell_off

9.13. window

MethodSCRIPT =>1.6

Supported instruments Sensit Wearable, EmStat4, Nexus

Provide a window for peak detection.

Only peaks whose highest point is in the window (bounds inclusive) will be reported.

Arguments
I
Left index var/ literal The index of the leftmost element that may register as a peak
(int)
Right index var/ literal The index of the rightmost element that may register as a peak

(int)

array indices 2
array heights 2
peak_detect data indices heights @i 10u window(@i 5i)

Page | 34
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

9.14. filter_type

MethodSCRIPT =1.7

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Specify a filter type.

Sets the bandwidth of only the selected filter type.

0 Using set_max_bandwidth without this optional argument, will overwrite the bandwidth of all
filter types.

Arguments

N I

Filter type uint32 Select from the following list

1: Setpoint filter. Generates the setpoint for the set potential (or current
in galvanostatic mode).

2: Control loop filter. Controls the CE so that the RE vs S (or current in
galvanostatic mode) match the setpoint.

3: Current to voltage filter. Converts WE current to a voltage. This
voltage is used both for galvanostatic control loop feedback, as well as
measuring the current.

4: Measurement filter. Measures various voltages (including the
converted WE current).

5: Second current to voltage filter. Converts WE2 current to a voltage.
6: iR compensation filter. Adds a portion of the converted WE current to
the control loop feedback.

The following example sets the bandwidth of all filters to 10 kHz, and then sets the iR compensation filter to 100
kHz.

Example

set_max_bandwidth 10k
set_max_bandwidth 100k filter_type(6)

9.15. ocp

MethodSCRIPT =1.7

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Specify an open circuit potential.

Used by the cell_on command to set the initial voltage during the cell_on command in Galvanostatic mode. If
the initial voltage is set to the OCP voltage, the initial applied current will settle from OA to the requested current,
preventing currents higher than the requested current.

P 35
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
e I
Filter type var / literal The open circuit potential in Volts.
(float)

The following example measures the OCP and uses it to reduce the initial applied current spike after the cell_on
command.

Example

var p
set_pgstat_mode 6
set_range ab 1
set_range db 1m
set_i 1m

meas 100m p ab
cell_on ocp(p)

9.16. gr_log

MethodSCRIPT >1.8

Supported instruments EmStat4T

When a QR code is successfully scanned, record its contents to the script output.

Any characters outside the set of visible Ascii characters will be written as \XX, where XX is the hexadecimal
value of the character byte.

The backslash character itself will be written as a double backslash.

For example the following text:

Hello
Backslash\

Would appear in the output as:

Hello\@ABackslash\\
Arguments
var count

array parsed_variables 5
qr_scan parsed_variables count qr_log()

P 36
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

When scanned, will write the barcode text to the log

P 3
age |7 £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 10. Tags

A script can have optional tags (or labels) to direct the execution flow in case of an event like aborting a running
script.

10.1. on_finished:

The commands after this this tag will be executed when the script is aborted, or when normal script execution
reaches the tag. A script can be aborted either by the MethodSCRIPT abort command, or by the abort (Z)
command from the communication protocol. Note that the commands after the on_finished: tag are not
executed if a script error has occurred, as no further commands are executed in this case.

The following example demonstrates the program flow when using abort and on_finished: in a script:

var i
store_var i 0i ja
loop i < 10i
send_string "before if"
ifi==2
send_string "abort"
abort
endif

send_string "after if"
add_var i 1i

endloop

on_finished:

send_string "finished"

Output:

L

Tbefore if
Tafter if
Tbefore if
Tafter if
Tbefore if
Tabort

+
Tfinished

The following scripts illustrates the use of the on_finished: tagin a more realistic use case. In this example, the
cell will be switched off when the EIS loop is finished or when the script is aborted during the EIS loop.

first configure channel and PGstat mode (not shown in this example)
#...
cell_on

P 38
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

meas_loop_eis h r j 10m 200k 100 17 0
pck_start
pck_add h
pck_add r
pck_add j
pck_end
endloop
on_finished:
cell_off

P 39
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 11. Error handling

Errors can occur that prevent the execution of the MethodSCRIPT. These errors can occur either during the
parsing of the script or during the execution of the script (runtime). If the error occurs during parsing, the line and
column number where the error occurred will be reported. During runtime, only the line number will be reported.
A command that returns an error will not return an extra newline \n after the newline of the error message.

Parsing error format

IXXXX: Line L, Col C\n

Runtime error format

IXXXX: Line L\n

Where: XXXX = the error code, refer to Appendix A, Error codes for a complete list of error codes. L = Line nr,
starting at 1
C = Line character nr, starting at 1

Up to MethodSCRIPT v1.3, lines containing only comments were not counted for runtime
o errors. Since MethodSCRIPT v1.4, comment lines are also counted, so the line numbers do
reflect the actual line number of the script, even during runtime.

Page | 40
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 12. PGStat modes

PGStat modes (Potentiostat / Galvanostat modes) are device-wide configurations that affect which hardware is
used during measurements. This is necessary for devices that have a choice between multiple measurement
hardware options with different properties. PGStat modes are device-specific, more information can be found in
Section B.1, “PGStat mode properties”.

12.1. PGStat mode off

All measurement hardware is turned off to save power, no measurements can be done.

12.2. PGStat mode low speed

The hardware configuration that has the best properties for low speed measurements is picked. Usually this
means it is less sensitive to high frequency noise and consumes less power. However the maximum bandwidth
is limited.

12.3. PGStat mode high speed

The hardware configuration that has the best properties for high speed measurements is used. In general, this
will consume more power and be more sensitive to noise. However, it will allow higher frequency measurements
to be done.

12.4. PGStat mode max range

This mode uses a hardware configuration having the highest possible potential range by combining the high and
low speed mode In general, this will consume more power and be more sensitive to noise The bandwidth is
limited to the bandwidth of the low speed mode.

12.5. PGStat mode poly_we (deprecated)

This mode sets the channel up to be used as an extra WE electrode that applies a potential relative to the WE of
the main channel. This is also known as a bipot or a poly WE. This mode uses the RE and CE of the main
channel, and does not use the RE and CE of the poly WE channel.

PGStat mode poly_we has been deprecated and may be removed in future releases.
Instead, configure a channel for poly_we mode using the command set_bipot_mode .
12.6. PGStat mode galvanostatic

This mode is used to control the applied current, rather than the applied potential. This mode is required for all
galvanostatic techniques and commands.

Page | 41
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 13. Script command summary

13.1. Command summary

The following table lists all MethodSCRIPT commands, in which version they are introduced and which
instruments are supported. In chapter Chapter 14, Script command description these commands are described

in detail.

Table 9. MethodSCRIPT command summary

MethodSCRIPT
command

Version

09ld yeiswy

Creating and manipulating variables

var
store_var

copy_var

Using arrays

array

array_set (deprecated)
array_get (deprecated)

subarray

Mathematical operations
add_var

sub_var

mul_var

div_var

mod_var

pow_var

log_var

Logical operations
bit_and_var
bit_or_var
bit_xor_var

bit_Isl_var

Page | 42

>1.2
>1.2
>1.2
>1.8

>1.3
>1.3
=>1.3
>1.3

Y

< < < <

< < < < =< < <

< < < <

(72
o)
=)
o,
=t
)
o
8
o
o3
o

< < < <

< < < < < =< <

< < < <

Pieiswiy

< < < <

< < < < < < <

< < < <

2
(U]
X
c
(7

< < < < < =< < < < < <

< < < <

Description

Declare a variable.
Store a value in a variable.

Copy a variable.

Declare an array.
Set a variable at the specified array index.
Get a variable from the specified array index.

Declare an array that is a view into an existing
array.

Add a value to a variable.

Subtract a value from a variable.

Multiply a variable.

Divide a variable.

Perform a modulo operation on a variable.
Raise a variable to a power.

Take the natural logarithm of a variable.

Perform a bitwise AND operation.
Perform a bitwise OR operation.
Perform a bitwise XOR operation

Logical Shift Left variable.

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

MethodSCRIPT
command

bit_lsr_var
bit_inv_var
Data type conversions
int_to_float
float_to_int

alter_vartype

Version

>1.3
>1.3
>1.5

091d yeiswiy

Time, synchronization and hibernate

rtc_get

abort

hibernate

wait

set_int

await_int

get_time

timer_start

timer_get
set_channel_sync
Conditional operations

if, elseif, else, endif

Loop constructs

loop

endloop
breakloop
Cell

set_e

set_i

Page | 43

>1.6

>1.2
>1.2

Y

Z < < < < < < =</ <

< < EEZEDTSIIE

<

Z < < < < < < =< <

riersuy

< < < < < < < =< <

<~ < < < < < < zZz <

Description

Logical Shift Right variable.

Bitwise invert a variable.

Change the data type from int to float.
Change the data type from float to int.

Alter the VarType of a variable.

Read the current date and time from the real-time
clock.

Abort the current script.

Put the device in hibernate mode.

Wait for the specified amount of time.

Configure the interval for the await_int command.
Wait for the next interval.

Get the time since device startup in seconds.

Start the timer.

Get the timer value.

Enable or disable channel synchronization.

Conditional statements allow the conditional
execution of commands.

Repeat a block of commands while some condition
is fullfilled.

Signal the end of a loop.

Break out of the current loop.

Apply a variable or literal as the WE potential.

Apply a variable or literal as the WE current in
galvanostatic mode.

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

MethodSCRIPT
command

cell_on

cell_off
set_e_aux
Measuring

meas

meas_ms_eis

meas_fast_cv

meas_fast_ca

meas_scp

Measurement loops
set_scan_dir

meas_loop_lIsv

meas_loop_acv

meas_loop_lsp

meas_loop_cv

meas_loop_dpv

meas_loop_swv

meas_loop_npv

meas_loop_ca

meas_loop_ca_alt_mux

meas_loop_cp

Page | 44

Version

091d yeiswiy

<

< ElEIZEEINRIEIES

<

riersuy

Description

Turn the cell on. This enables the WE potential or
current regulation.

Turn the cell off.

Set the voltage on the AUX DAC.

Measure a data point of the specified type and
store the result as a variable.

Perform a Multi-Sine EIS (MSEIS) measurement.

Perform a Fast Cyclic Voltammetry (FCV)
measurement.

Perform a Fast Chronoamperometry (FCA)
measurement.

Perform a Stripping Chronopotentiometry (SCP)
measurement.

Reverse the direction of the CV scan.

Perform a Linear Sweep Voltammetry (LSV)
measurement.

Perform a AC Voltammetry (ACV) measurement.

Perform a Linear Sweep Potentiometry (LSP)
measurement.

Perform a Cyclic Voltammetry (CV) measurement.

Perform a Differential Pulse Voltammetry (DPV)
measurement.

Perform a Square Wave Voltammetry (SWV)
measurement.

Perform a Normal Pulse Voltammetry (NPV)
measurement.

Perform a Chronoamperometry (CA) measurement.

Perform a Chronoamperometry (CA) measurement
in alternating multiplexer mode.

Perform a Chronopotentiometry (CP)
measurement.

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

MethodSCRIPT
command

meas_loop_cp_alt_mux

meas_loop_pad

meas_loop_ocp

meas_loop_ocp_alt_mux

meas_loop_eis

meas_loop_eis_dual

meas_loop_geis

Script output
pck_start
pck_add

pck_end

file_open
file_close
set_script_output
send_string
Ranging
set_pot_range
(deprecated)

set_cr (deprecated)

set_range

Page | 45

Version

\Y%
—
ST SR

091d yeiswiy

pd

< < < <

Z Bl RIEIES

< < < <

riersuy

< < < <

< < < <

Description

Perform a Chronopotentiometry (CP) measurement
in alternating multiplexer mode.

Perform a Pulsed Amperometric Detection (PAD)
measurement.

Perform an Open Circuit Potentiometry (OCP)
measurement.

Perform an Open Circuit Potentiometry (OCP)
measurement in alternating multiplexer mode.

Perform a (potentiostatic) Electrochemical
Impedance Spectroscopy (EIS) measurement.

Perform a dual (potentiostatic) Electrochemical
Impedance Spectroscopy (EIS) measurement.

Perform a Galvanostatic Electrochemical
Impedance Spectroscopy (GEIS) measurement.

Start a measurement data packet.

Add a variable (or literal) to the measurement data
package previously started with pck_start.

Send the measurement data package previously
started with pck_start, containing all variables
added using pck_add.

Open a file on the persistent storage.
Close the currently open file.
Set the output mode for the script.

Send an arbitrary string as output of the
MethodSCRIPT.

Set the expected potential range for the following
measurements.

Set the current range for the given maximum
current.

Set the expected maximum absolute current or
potential for a given VarType.

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

MethodSCRIPT
command

set_range_minmax

set_autoranging

trim_enable
PGStat

set_acquisition_frac

set_acquisition_frac_auto
adjust

set_ir_comp

set_pgstat_chan

set_poly_we_mode
(deprecated)

set_pgstat_mode

set_bipot_mode

set_bipot_potential

set_max_bandwidth

GPIO
set_gpio_cfg
set_gpio_pullup
set_gpio
get_gpio
set_gpio_msk
get_gpio_msk
12C

i2c_config

i2c_write_byte

Page | 46

Version

091d yeiswiy

<

< < < < =< <

< ElEIZEEINRIEIES

< < < < < <

<

riersuy

< < < < < <

< << </ <|<

Description

Set the expected minimum and maximum current
or potential for a given VarType.

Configure the autoranging for all meas_loop_*
commands.

Enable or disable trimming for a given VarType.

Set the fraction of the iteration time to use for
measurement.

Filter out the given frequency by automatically
adjusting acquisition times.

Set resistance to be compensated by iR
compensation.

Select a PGStat channel.

Select the mode of the additional working
electrode.

Set the PGStat hardware configuration to be used
for measurements.

Set the mode of the second working electrode.

Set the potential (offset) of the second working
electrode.

Set maximum bandwidth of the signal being
measured.

Set the GPIO pin configuration.

Enable or disable GPIO pin pull-ups.

Set the GPIO output values.

Get the GPIO input pin values.

Write to the GPIO pins indicated by the mask.

Get the GPIO input pin values with a mask.

Setup 12C configuration.

Transmit one byte to an I2C target device.

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

MethodSCRIPT
command

i2c_read_byte
i2c_write
i2c_read
i2c_write_read
Multiplexers
mux_config

mux_get_channel_count

mux_set_channel
Misc

notify_led

smooth

peak_detect
beep
battery_perc

get_progress

linear_fit

mean
gr_scan
Display
display_draw
display_clear

display_text

display_icon

Page | 47

Version

>1.2
>1.2
>1.2

v
—
N NN o

>1.8
>1.8
>1.8

< < < < 0ol 1eISW

<

< Zz Zz <

< < < < EEEEEISIRIES

zZ

< < zZz <

riersuy

< < < <

<

< Zz Zz <

< < < <

<

< z < <

Description

Receive one byte from an [°C target device.

Write one or more bytes to an [2C target device.
Read one or more bytes from an I2C target device.

Write to and read from an [2C target device.

Configure a multiplexer to use in MethodSCRIPT.

Get the number of channels on the multiplexer
setup.

Select channel on the multiplexer.

Notify the user of a user-defined event, using the
LED.

Apply Savitzky-Golay smoothing to data in an
array.

Find peaks in the given data.
Make a beep, and wait for it to be finished.
Read the battery’s charge as a percentage.

Read the progress through the current
measurement, from 0 to 100.

Perform a linear least squares regression on a set
of data.

Take the mean of an array of data.

Trigger the QR code scanner.

Immediately prompt the display to be updated.
Remove all elements from the display.

Add a new line of text to the display, to be shown
the next time the display is drawn (see Section
14.19.1, “display_draw”).

Add an icon on the display, to be shown the next
time the display is drawn (see Section 14.19.1,
“display_draw”).

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

MethodSCRIPT Version I'E"l o I'g"l Description
command Qa2 | @
B =B
g | | *
Q
o
)
display_progress >1.8 N N N N Add a progress bar on the display, to be shown the
next time the display is drawn (see Section 14.19.1,
“display_draw”).
display_btns >1.8 N N N N Show one or two buttons on the display, then
immediately update the display and wait for the
user to press one.
display_inp_num >1.8 N N N N Prompt the user for a numerical value, and wait
until one is provided.
display_scroll_add >1.8 N N N N Add an entry to the scroll list on the display, to be
shown using Section 14.19.9, “display_scroll_get”.
display_scroll_get >1.8 N N N N Show the scroll items (added by Section 14.19.8,
“display_scroll_add”) to the user, and wait for a
choice to be made.
display_keyboard >1.8 N N N N Get a line of text entered by the user and record it
to the script output.
Page | 48

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

13.2. MethodSCRIPT version on instruments
The below table lists the relationship between the instrument’s firmware version and the MethodSCRIPT version.

Table 10. MethodSCRIPT and instrument firmware versions

MethodSCRIPT| EmStat Pico Sensit EmStat4 Nexus
Wearable
1.0 - - -

v1.0

1.1 vi.1 - - -

1.2 v1.2 - v1.0 -
1.3 v1.3 - vi.1 -
1.4 - - vi.2 -
1.5 - - v1.3 -
1.6 - vi4 - -
1.7 v1.5 = = v1.0
1.8 v1.6 v1.6 vi4 viA
Page | 49

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 14. Script command description

14.1. Creating and manipulating variables

14.1.1. var

MethodSCRIPT >1.1
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Declare a variable. All MethodSCRIPT variables must be declared before use. When a variable is declared, it is

initialized with the floating-point value 0 and VarType aa. For details on naming and limitations see Chapter 8,
Script argument types.

Arguments

Name |Type Desoripon |
Variable name var Variable to declare.

Example

Define two variables with names foo and bar

var foo
var bar

14.1.2. store_var

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Store a value in a variable.

Arguments
T
Variable name var [out] Variable to store value into.
(int, float)
Value literal Literal value to store in the variable.
(int, float)
Variable Type VarType The type identifier for this value, see Chapter 7, Variable types.
Page | 50

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Store the value 200 as a floating-point number in the variable foo, with VarType VT_MISC_GENERIC1 (ja).

store_var foo 200 ja

Same as above, but now as an integer value instead of floating-point value.

store_var foo 200i ja

14.1.3. copy_var

MethodSCRIPT =1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Copy a variable. Copying includes the value, VarType and any metadata stored in a variable.

Arguments
T
Source variable var Variable to copy.

(int, float)
Destination var [out] Variable to overwrite.
variable (int, float)
Example

Copies the variable x to y.

copy_var x y

14.2. Using arrays

14.2.1. array
MethodSCRIPT =12
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Declare an array. Arrays can store multiple variables. All arrays must be declared before use. The name may not
be used by another array or variable. For details on naming and limitations see Chapter 8, Script argument

types.

P 51
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arrays have a fixed size and their memory is allocated when the command is first run. The minimum size is 1
and the maximum size is determined by the available memory on the device (see Table 6, “Total storage for
array elements”). If there is not enough memory available, an error is generated.

It is allowed to declare the same array multiple times (with the same name). This makes it possible to declare an
array inside a loop. However, when a variable is declared multiple times, the size must be the same, otherwise
an error is generated. When redeclaring an array, the memory is reused. All values in the array are initialized with
the floating-point number O.

Arrays are necessary for some MethodSCRIPT commands, but can also be used in general to store multiple
variables, for example inside loops. Arrays use zero-based indexing, so the first element has index O, the second
element has index 1, and so on.

Arrays elements can be referenced using the x[i] style syntax described in Section 8.2.1, “Array Access
Syntax”.

° Previous MethodScript releases advised the use of array_set and array_get, which have
now been deprecated.
array memory is not freed until the end of the MethodSCRIPT, so it is best to avoid declaring
many large arrays.
Arguments
T
Variable name array Array reference.
Array size var / literal The amount of variables this array can hold.
(int)
Example

Declare array with name foo_bar_baz and size 10.

array foo_bar_baz 10

e Variables and arrays with the same name cannot exist in the same script.

14.2.2. array_set (deprecated)

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Set a variable at the specified array index.

° The array_set command has been deprecated and may be removed in future releases. Use

P 52
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

the store_var or copy_var commands instead, with array access syntax.

Arguments

e N

Array variable array Array reference.

Array index var / literal The index in the array to store the value to.
(int)

Variable var / literal The variable to store in the array. If a literal is used, the VarType will be set
(int, float) to aa (UNKNOWN).

Example

The following example declares an array foobar with 6 elements, and writes the value 0.02 to the last element
(the variable at index 5).

array foobar 6
array_set foobar 5i 20m

To set the VarType as well, first define another variable, then store that variable in the array. The following
example is similar to the example above, but also sets the VarType to ja.

array a b

var t

store_var t 20m ja
array_set a 51 t

14.2.3. array_get (deprecated)

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Get a variable from the specified array index.

° The array_get command has been deprecated and may be removed in future releases. Use
the copy_var command instead, with array access syntax.

Arguments
Array variable array Array reference.
Page | 53

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

Array index var / literal The index in the array to get the value from.
(int)

Variable var [out] The output variable to store the data from the array in.
(int, float)

Example

Get the value in the array at index 5 and store it in variable b .

array_get a 5i b

14.2.4. subarray
MethodSCRIPT >1.8

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Declare an array that is a view into an existing array. This does not allocate any new variables - it only allows
access to existing data via a new variable binding.

You may encounter unexpected behaviour if the arrays passed to a MethodScript command
point to the same underlying data.
Arguments
e e oo |
Array variable array The new subarray to declare
Source array array The source array into which this subarray is a view
Array index var / literal The start index in the source array, where the subarray starts
(int)
Length var / literal The length of the subarray
(int)
Example

The following example shows how an array and a subarray pointing into it share the same underlying data.

Declare a length 10 array called 'source'

array source 101

Declare a subarray which views elements 5 and 6 of 'source'
subarray view source 51 2i

store_var source[5i] 3141m aa

Page | 54
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

store_var source[6i] 42i aa

send_string f"{view[@i]}, {view[1i]}"

This logs "3.14" and "42", because view[@i] and view[1i]
point to the same data as source[5i] and source[6i]

14.3. Mathematical operations

14.3.1. add_var

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Add a value to a variable.

The value of arg?2 is added to the variable specified by arg1. Both arguments must have the same data type
(both int or both float). The VarType and metadata of the variable(s) are not changed.

Arguments
R
argi var [in/out] Variable to be updated.

(int, float)
arg2 var / literal Value to add to arg1.

(int, float)
Example

Add 1 to variable x and store the result in x.

add_var x 1

14.3.2. sub_var

MethodSCRIPT =>1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Subtract a value from a variable.

The value of arg2 is subtracted from the variable specified by arg1. Both arguments must have the same data
type (both int or both float). The VarType and metadata of the variable(s) are not changed.

P 55
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
R
argi var [in/out] Variable to be updated.

(int, float)
arg2 var / literal Value to subtract from arg1.

(int, float)
Example

Subtract 1 from the variable x and store the result in x.

sub_var x 1

14.3.3. mul_var

MethodSCRIPT =1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Multiply a variable.

The value of arg1 is multiplied with the value of arg2 . Both arguments must have the same data type (both int
or both float). The VarType and metadata of the variable(s) are not changed.

Arguments
e T
argi var [in/out] The variable to be multiplied.
(int, float)
arg2 var / literal The value to multiply with.
(int, float)
Example

Multiply the variable x with 1.5 and stores the result in x .

mul_var x 1500m

14.3.4. div_var

MethodSCRIPT =11

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

P 56
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Divide a variable.

The value of arg1 is divided by the value of arg2 . Both arguments must have the same data type (both int or
both float). The VarType and metadata of the variable(s) are not changed.

A floating-point division by zero results in Not-a-Number. An integer division by zero is not
allowed and results in an error.
Arguments
N S
argi var [in/out] The dividend (as input); the result (quotient) as output.
(int, float)
arg2 var / literal The divisor.
(int, float)
Example

Divide the variable x by 1.5 and stores the result in x.

div_var x 1500m

14.3.5. mod_var

MethodSCRIPT >1.5

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a modulo operation on a variable.

Calculate the remainder of dividing arg1 by arg2 and store the result in arg1. Both arguments must be integer
variables. The VarType and metadata of the variable(s) are not changed.

Arguments
T
argi var [in/out] The variable to be divided.

(int)
arg2 var / literal The value to divide by.

(int)
Example

Calculate the remainder of dividing the variable a by 4 and store the result in a.

P 57
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

mod_var a 4i

14.3.6. pow_var

MethodSCRIPT >1.7

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Raise a variable to a power.

Raise arg1 to the power of arg2 and store the result in arg1. Both arguments must have the same data type
(both int or both float). The VarType and metadata of the variable(s) are not changed.

mathematically invalid float parameters are used (such as 0" or -1°%) no error will be raised,

0 If a negative integer number is used for the exponent, an error will be raised. If
but the result will be NaN

Arguments
T
argi var [in/out] The variable to be updated and the base of the exponentiation.
(int, float)
arg? var / literal The exponent.
(int, float)
Example

Take the square root of x and store the result in x..

pow_var x 500m

14.3.7. log_var

MethodSCRIPT =1.8

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Take the natural logarithm of a variable.
The value of arg1 will be updated to be equal to its natural logarithm.
To convert to a logarithm with a base other than e, the standard transformation can be used:

log_B(X) = \frac{log(X)}{log(B)}

P 58
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

A Nonpositive inputs will error
Arguments
T I
argi var [in/out] The variable to be updated
(float)
Example

Take the natural logarithm of x

log_var x

14.4. Logical operations

14.4.1. bit_and_var

MethodSCRIPT =1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a bitwise AND operation.

The value of arg2 is bitwise ANDed to the variable specified by argl. The VarType and metadata of the
variable(s) are not changed.

Arguments
T
argi var [in/out] Argument 1 of the bit operation, and also the output variable.

(int)
arg2 var / literal Argument 2 of the bit operation.

(int)
Example

Perform a bitwise AND operation on t and 0x5555 and store itto t.

bit_and_var t 0x5555

P 59
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

14.4.2. bit_or_var

MethodSCRIPT =1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a bitwise OR operation.

The value of arg? is bitwise ORed to the variable specified by arg1. The VarType and metadata of the variable(s)
are not changed.

Arguments
T
arg var [in/out] Argument 1 of the bit operation, and also the output variable.
(int)
arg? var / literal Argument 2 of the bit operation.
(int)
Example

Perform a bitwise OR operation on t and 0x5555 and store it to t.

bit_or_var t 0x5555

14.4.3. bit_xor_var

MethodSCRIPT =1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a bitwise XOR operation

The value of arg2 is bitwise XORed to the variable specified by argl. The VarType and metadata of the
variable(s) are not changed.

Arguments
I I
argi var [in/out] Argument 1 of the bit operation; also the output variable.
(int)
arg2 var / literal Argument 2 of the bit operation.
(int)
Page | 60

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Perform a bitwise XOR operation on t and 0x5555 and storeitto t.

bit_xor_var t 0x5555

14.4.4. bit_Isl_var

MethodSCRIPT >1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Logical Shift Left variable.

Shift the variable specified by the first argument to the left by the number of bit positions specified in the second
argument. The VarType and metadata of the variable(s) are not changed.

Arguments
T
argi var [in/out] The variable to shift.
(int)
arg? var / literal Number of bits to shift.
(int)
Example

Perform a bitwise shift 4 places to the left on t and storeitto t.

bit_1sl_var t 4i

14.4.5. bit_Isr_var

MethodSCRIPT >1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Logical Shift Right variable.

Shift the variable specified by the first argument to the right by the number of bit positions specified in the
second argument. The VarType and metadata of the variable(s) are not changed.

P 61
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
I
argi var [in/out] The variable to shift.

(int)
arg? var / literal Number of bits to shift.

(int)
Example

Perform a bitwise shift 4 places to the right on t and storeitto t.

bit_1lsr_var t 4i

14.4.6. bit_inv_var

MethodSCRIPT =1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Bitwise invert a variable.

e The sign bit is also inverted by this operation.
Arguments
T
Variable var [in/out] The variable to invert, the result is stored here.
(int)
Example

Perform a bitwise inverse operation on t.

bit_inv_var t

14.5. Data type conversions

14.5.1. int_to_float

MethodSCRIPT =>1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

P 62
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Change the data type from int to float. Because of the nature of floats, this command will round to the nearest
value. The VarType and metadata of the variable(s) are not changed.

Arguments
N R
Variable var [in/out] Variable to convert.
(int)
Example

Convert variable a to float.

int_to_float a

14.5.2. float_to_int

MethodSCRIPT >1.3
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Change the data type from float to int. When changing the data type from floating-point to integer, the fractional

part is discarded, i.e., the value is truncated towards zero. If the value is outside the range of an int32 variable,
the result is undefined. The VarType and metadata of the variable(s) are not changed.

Arguments

Variable var [in/out] Variable to convert.
(float)

Example

Convert variable a to int.

float_to_int a

14.5.3. alter_vartype

MethodSCRIPT =1.5

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Alter the VarType of a variable.

P 63
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
T
Variable var [out] Variable reference.

(int, float)
Variable Type VarType The type identifier for this value, see Chapter 7, Variable types.
Example

Alter the type of variable a to VT_MISC_GENERICT.

alter_vartype a ja

14.6. Time, synchronization and hibernate

14.6.1. rtc_get
MethodSCRIPT >1.6
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Read the current date and time from the real-time clock. This matches the behaviour of the System date and
time register. On devices without a Real-Time Clock, this will return the system time relative to startup.

The following instruments support an external Real-Time Clock:

e The EmStat Pico does not have an RTC on the module, but does support the Ablic S-35390A RTC, which
is incorporated in the the Sensit BT and on the EmStat Pico Development Kit. Support for it can be enabled
in the Peripheral configuration register.

e The Sensit Wearable and EmStat4T incorporate an external RTC which is natively supported.

Arguments

e I
Year var [out] (int) The year, starting at 1 for 1AD

Month var [out] (int) The month, starting at 1 for January

Day var [out] (int) The day, starting at 1

Hour var [out] (int) The hour, 0 to 23

Minute var [out] (int) The minute, 0 to 59

Second var [out] (int) The second, 0 to 59

Page | 64

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Read and send out the current time

var yr
var mo

var dy

var hr

var mn

var sn

rtc_get yr mo dy hr mn sn

send_string f"{yr} {mo} {dy} {hr} {mn} {sn}"

14.6.2. abort

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Abort the current script. If the script contains an on_finished: tag, execution will continue from there, otherwise
the script is terminated immediately without error. If an abort command is executed inside a (measurement)
loop, all endloop commands will still be executed. This means that the usual measurement loop output will be
generated even when the measurement loop is aborted. Once the on_finished: tag has been processed, the
abort command does not have any effect anymore, i.e. code after the on_finished: tag cannot be aborted

Arguments

Example

var ack

var data

store_var ack 01 ja
i2c_read_byte 0x48i data ack

if ack =0

send_string "NACK received"
abort

endif

...continue script here if I2C read succeeded
on_finished:
...always execute code after the on_finished: command

14.6.3. hibernate

MethodSCRIPT =1.2

P 65
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Supported instruments EmStat Pico, Sensit Wearable, EmStat4

Put the device in hibernate mode. Hibernate is deep sleep mode in which many non-critical components of the
instrument are disabled to reduce power consumption. The instrument remains functioning during hibernate, but
suspends script execution until any of the enabled wake-up conditions is met. There are three wake-up
conditions, that can be enabled individually:

e Communication: A character is received over the communication interface (typically UART or USB).

e WAKE pin: The WAKE pin is asserted. Each instrument has a dedicated WAKE pin (GPIO5 on the EmStat4,
GPIO7 on the EmStat Pico and Sensit Wearable). The pin must be configured correctly (as input pin) when
this wake-up source is enabled. On the EmStat4, a low value on the input wakes up the instrument. On the
EmStat Pico and Sensit Wearable, a high-to-low transition (falling edge) wakes up the instrument.

e Timer: The specified time has passed.

e Double-tap: A double-tap has been detected using the onboard accelerometer (Sensit Wearable only).

If multiple wake-up sources are enabled, the instrument wakes up as soon as one condition is met.

In MethodSCRIPT version 1.3 or lower, all channels settings were cleared, and channels
were switched off in hibernate mode.

during hibernate might get lost.

Since communication input is flushed during hibernation, it can be hard to abort scripts that
have very little time between hibernations.

When automating the hibernate command on a MethodScript device, it is best to use a
r sync character - \x16 - to wake the device from comms to ensure there is no reply. When
- using the serial interface manually, it is best to send a plain newline - \n - which may cause a
newline to be echo’d from the device.

o During hibernate, the communication input is flushed, so any commands sent to the device

Arguments
I
Wake-up source uint8 Bitmask for wake-up sources:
mask 0x01 = Communication
0x02 = WAKE pin
0x04 = Timer
0x08 = Double-tap (Sensit Wearable only)
At least one wake-up source must be specified.
Wake-up time var / literal Time in seconds after which the system is woken up by the system timer.
(float) (Must be >0 if the Timer is used as wake-up source.)
Example

Hibernate until the system is woken by the wake-up pin, UART or after 60 seconds.

P 66
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

hibernate 7i 60

Device-specific information

EmStat Pico

Disabling internal ADT7420 to save power

The hibernate command on the EmStat Pico will disable the on-board ADT7420 temperature sensor to
save more power when GPIO8 and GPIO9 are configured for 12C. The current consumption with the
temperature sensor enabled is about 250 pA higher that it would be with the sensor disabled. It is up to
the user to configure these pins for [2C prior to entering hibernate or disable the temperature sensor
manually. See Section 14.15.1, “set_gpio_cfg” for more information on configuring GPIO.

Shutdown output pin

The EmStat Pico has the ability to set GPIOO high when in hibernate. This behavior can be activated by
configuring GPIO0 in mode 2 (see example below).

set_gpio_cfg 0x01 2

Supported PGStat modes

The EmStat Pico can only enter hibernation in PGStat modes "off (0)", "low speed (2)", and "poly_we (5)".
In any other mode, an error (0x0023) will be thrown.

In modes low speed and poly_we mode, a potential can still be applied during hibernation. This will
significantly increase power consumption by about 1 mA. For lowest power consumption, put both
channels into PGStat mode off.

Prior to firmware version 1.4.00, the EmStat Pico would instead overwrite the PGStat mode to "off (0)".

Known limitations

e On the EmStat Pico, arrays are not preserved when a hibernate command is issued.

® The minimum hibernation time is 10 ms (125 ms in FW version 1.3 or lower). Error code 0x4205 will
be thrown when the specified time value is too short.

Sensit Wearable

Wake pin

The WAKE pin can be activated by pushing on the top of the housing.

P 67
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Double-tap

When enabled, a quick double tap can wake the device.

Double-tap detection is done by measuring acceleration. This means false positives can occur due to
acceleration from other sources. A button press can also sometimes be interpreted as a double-tap, so it

is not recommended to enable the double-tap and WAKE pin wakeup source at the same time, since this
can cause WAKE pin events to be missed in rare cases.

BlueTooth

BlueTooth connections are maintained while hibernating. It is not possible the wake the device from
BlueTooth. Received data will be handled when the device wakes up from other another wake source.

Supported PGStat modes

The Sensit Wearable can only enter hibernation in PGStat modes "off (0)", "low speed (2)", and "poly_we
(5)". In any other mode, an error (0x0023) will be thrown.

In modes low speed and poly_we mode, a potential can still be applied during hibernation. This will

significantly increase power consumption by about 1 mA. For lowest power consumption, put both
channels into PGStat mode off.

Known limitations

¢ On the Sensit Wearable, arrays are not preserved when a hibernate command is issued.

® The minimum hibernation time is 10 ms. Error code 0x4205 will be thrown when the specified time
value is too short.

EmStat4

The EmStat4 does not support deep-sleep in hardware, and so the hibernate command does not
decrease power consumption.

For compatibility, the EmStat4 still accepts the hibernate command and will suspend MethodScript
execution until the wakeup conditions is met.

Other, non-MethodScript functionality may remain responsive.

Nexus

The Nexus does not support the hibernate command

14.6.4. wait

MethodSCRIPT >1.1

P 68
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Wait for the specified amount of time.

Arguments
e
Time var / literal The amount of time to wait in seconds.
(float)
Example

Wait 100 milliseconds.

wait 100m

14.6.5. set_int

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Configure the interval for the await_int command. This also (re)starts the counter for the interval timer.

Arguments
T
Interval var / literal The interval time in seconds.
(float)
Example

Set interval to 100 milliseconds.

set_int 100m

14.6.6. await_int

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Wait for the next interval. This command allows the use of an asynchronous background timer to synchronize
the script to a certain interval.

P 69
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments

Example

Set interval to 100 ms. Then execute a loop every 100 ms using await_int to synchronize the start of each loop.
Even though the loop takes a variable amount of time because of the variable wait command, the loop will
execute once every 100 ms.

var t

store_var t 0 aa

set_int 100m

loop until wait time (t) is 50 ms
loop t <= 50m

wait for next interval of 100ms
await_int

add 10 ms to wait time

add_var t 10m

wait variable amount of time
wait t

endloop

14.6.7. get_time

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Get the time since device startup in seconds.

resolution). To measure time differences with a higher resolution, use the timer_start and

0 The resolution is dependent on the returned time value (see table below for estimated
timer_get commands instead.

Arguments
T
Variable var [out] The output variable to store the time in.

(float) The VarType of the variable will be set to VT_TIME (eb).
Example

Store the current time in variable t.

get_time t

P 70
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Time accuracy

Internally, the system time is stored with a high resolution. MethodSCRIPT variables, on the other hand, use
floating-point representation for which the resolution depends on the actual value. As a result, the resolution of
the time returned by the get_time command gets lower when the device has been running for a longer time.
The table below gives an indication of the resolution to expect for certain system time values. For example,
between 10 an 100 days, the value may only distinguish between seconds, but not milliseconds. In a sense, it is
comparable with a clock which arms only tick at whole seconds rather than move linearly.

<1 hour 1ms

1 to 24 hours 10 ms

1to 10 days 100 ms

10 to 100 days 1s

> 100 days worse than 1 s

14.6.8. timer_start
MethodSCRIPT >1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Start the timer.

A high-resolution timer is available to conveniently measure (execution) time. The timer is initialized at O when the
script execution starts, and everytime the timer_start command is executed. Because of this, it is less
susceptible to decreasing accuracy, and only one MethodSCRIPT variable is necessary to determine the time
difference between two moments in the script. The timer value can be read using the timer_get command.

Arguments

Example

timer_start

14.6.9. timer_get
MethodSCRIPT >1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Get the timer value. This returns the time relative to the last call to timer_start (or to the start of the script
otherwise). This method can be called multiple times without changing the starting moment.

P 71
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
T I
Relative time var [out] The time relative to the last timer_start command.
(float) The VarType of this variable will be set to VT_TIME (eb).
Example
var time

timer_start

...Do something interesting that takes a bit of time here...
timer_get time

pck_start

Add a as a timestamp

pck_add time

...Add other package data...

pck_end

Due to floating-point number limitations the resolution is dependent on the returned time
value. For a time resolution of less than 1 ms, the measured time should not exceed 1 hour.

14.6.10. set_channel_sync

MethodSCRIPT =1.3

Supported instruments EmStat4, Nexus

Enable or disable channel synchronization.

On multi-channel devices that support it, the set_channel_sync can be used to synchronize measurements

between multiple channels. When synchronization is enabled the slave device will wait until the master enables
synchronisation. After that, the slave and master will synchronize their measurement loop start and iterations.

When synchronization is enabled, the master will wait 100 ms before starting a measurement
loop, to make sure the slave devices are ready to start.

Arguments
R I
Sync enable uint8 0: Disable syncing
1: Enable syncing
Example

Enable syncing

P 72
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

set_channel_sync 1

14.7. Conditional operations

14.7.1. if, elseif, else, endif

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Conditional statements allow the conditional execution of commands. Every if statement must be terminated
by an endif statement. In between the if and endif statements can be any number of elseif statements
and/or one else statement. Accepts either integer or floating-point variables, but if argument types don’t match,
they are compared as floats.

Arguments for if, elseif commands

I

Operand 1 var / literal The left side of the conditional expression.
(int, float)
Operator expression The operator of the conditional expression. See Section 8.6, “condition
expressions”.
Operand 2 var / literal The right side of the conditional expression.
(int, float)
Example

One of the send_string commands will be executed, depending on the value of variable a.

ifa>>5

send_string "a is greater than 5"

elseif a >= 3

send_string "a is less than or equal to 5 but greater than or equal to 3"
else

send_string "a is less than 3"

endif

14.8. Loop constructs

14.8.1. loop

MethodSCRIPT =11

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

P 73
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Repeat a block of commands while some condition is fullfilled.

Each time the loop command is executed, the condition expression is evaluated. If the result is true, the
commands between the loop and the corresponding endloop command are executed. The endloop command
then jumps back to the loop command. If the result of the expression is false, the script continues after the
corresponding endloop command.

For every loop command, there must be exactly one matching endloop command.

Arguments
T
Operand 1 var / literal The left side of the conditional expression.

(int, float)
Operator expression The operator of the conditional expression.
Operand 2 var / literal The right side of the conditional expression.

(int, float)
Example

Add 1 to variable i until it reaches the value 10.

Note that the code between the 1oop and endloop commands is indented for readability, but this is not required.
As described in Chapter 3, Script format, whitespace at the start of the line is ignored.

var i

store_var i 0i aa
loop i < 10i
add_var i 1i
endloop

14.8.2. endloop

MethodSCRIPT =11

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Signal the end of a loop.

This command is used to end a loop command or any of the measurement loop commands. See the
corresponding commands for more details.

Arguments

Page | 74
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

14.8.3. breakloop
MethodSCRIPT >1.2
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Break out of the current loop. The script will continue execution after the next endloop .

Arguments

14.9. Cell

14.9.1. set_e

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Apply a variable or literal as the WE potential. The potential is limited by the potential range of the currently active
PGStat Mode see Section B.1, “PGStat mode properties”.

Arguments
T
Potential var / literal The WE potential to apply in Volts.
(float)
Example

Set WE potential to 0.1 V.

set_e 100m

14.9.2. set_i

MethodSCRIPT >1.3

Supported instruments EmStat4, Nexus

Apply a variable or literal as the WE current in galvanostatic mode. Applied currents are limited by the selected
CR. It is advised to use the set_range command before calling set_i .

P 75
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
e
Current var / literal The WE current to apply in amperes.
(float)
Example

Sets control current value for the galvanostat loop to 0.1 A.

set_range ba 100m
set_i 100m
14.9.3. cell_on

MethodSCRIPT >1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Turn the cell on. This enables the WE potential or current regulation. Whether the WE is regulated for current or
for potential depends on the selected PGStat Modke.

Arguments

Optional arguments

The following optional arguments are supported:
® ocp
Example

Turn the cell on. The instrument will start applying the configured potential or current.

cell_on

14.9.4. cell_off

MethodSCRIPT =1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Turn the cell off.

P 76
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments

Example

Turn the cell off. This stops the instrument from applying a potential or current to the cell.

cell_off

14.9.5. set_e_aux

MethodSCRIPT >1.4

Supported instruments EmStat4, Nexus

Set the voltage on the AUX DAC.

Arguments
Voltage var / literal Output voltage.
(float)
Example
set_e_aux a

14.10. Measuring

14.10.1. meas

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Measure a data point of the specified type and store the result as a variable. The data point will be averaged for
the specified amount of time at the maximum available sampling rate.

For supported value types of each device, refer to Section B.5, “Supported variable types for meas command”.

P 77
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
T
Duration var / literal The amount of time to spend averaging measured data.
(float)
Destination var [out] Variable to store the measured data in.
(float)
Var type VarType The type of variable to measure, see Chapter 7, Variable types.

Optional arguments

The following optional arguments are supported:

® add_meas

Example

Measure the signal with the VarType ba (VT_CURRENT) for 100 ms and store the result in the variable c .

meas 100m c ba

14.10.2. meas_ms_eis

MethodSCRIPT >1.5

Supported instruments EmStat4, Nexus

Perform a Multi-Sine EIS (MSEIS) measurement.

Multi-Sine EIS (MSEIS) can measure an impedance spectrum in less time then EIS at the cost of a reduced
Signal-to-Noise Ratio (SNR). This command performs a potentiostatic multi-sine EIS measurement and stores

the resulting frequencies, Z-real, and Z-imaginary in the given arrays.

The following commands currently have no effect on MSEIS measurements:

® set_max_bandwidth : bandwidth is taken from frequency scan ranges.

® set_pot_range: pot range is taken from amplitude and DC potential arguments.

Arguments
T
Applied array [out] Qutput array to store the applied frequencies (Hz) of all harmonics.
frequencies (float)
Measured Z-real array [out] Output array to store the real part of the measured complex impedances.
(float) This field also contains the meta-data of the I-signal (current)
Page | 78

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

Measured Z- array [out] QOutput array to store the imaginary part of the measured complex
imaginary (float) impedances. This field also contains the meta-data of the E-signal
(potential)
Amplitude var / literal Peak amplitude of the applied waveform in volt.
(float)
Base frequency var/ literal Base frequency of the applied waveform in Hz.
(float)
DC potential var / literal DC potential offset of the applied waveform in volt.
(float)
Preset var / literal Index of the waveform preset that should be used.

(int)

Optional arguments
eis_tdd
eis_opt

ms_eis_acdc

Presets

Depending on the expected impedance curve, a perturbation-preset can be chosen. A total of 6 presets are
available with varying harmonics and amplitude distributions. Presets 1, 2, 4 and 5 feature a logarithmically
decaying amplitude distribution, meaning that the base frequency has a relative amplitude of 1, and the highest
included harmonic has a relative amplitude as specified in the table. The decrease of amplitude follows a
logarithmic distribution, and can be benificial when the cell shows capacitive behavior.

Multisine 5 Preset O Preset 1 (min rel. amplitude = Preset 2 (min rel. amplitude =
(1-9x) 0.7) 0.3)
WITHET G K Preset 3 Preset 4 (min rel. amplitude = Preset 5 (min rel. amplitude =
(1-99x) 0.5) 0.1)

Example

Perform a MSEIS measurement using multisine preset 3 with 10 mV peak amplitude and 180 mV DC offset. The
harmonic frequencies and complex impedances are stored in the arrays fregs, reals and imags. The user must
ensure the supplied arrays are long enough to store the results of the chosen preset. When the measurement is
done, the data is sent back point by point in a loop.

array fregs 15
array reals 15
array imags 15
var idx

P 79
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

meas_ms_eis freqs reals imags 10m 100m 180m 3
store_var idx 01 ja

loop idx < 15

pck_start

pck_add freqs[idx]

pck_add reals[idx]

pck_add imags[idx]

pck_end

add_var idx 1i

endloop

14.10.3. meas_fast_cv

MethodSCRIPT =1.4

Supported instruments EmStat4, Nexus

Perform a Fast Cyclic Voltammetry (FCV) measurement. In a CV measurement, the potential is stepped from the
begin potential to the vertex 1, vertex 2 and back to the begin potential. For each step, the current is measured.
Contrary to the meas_loop_cv function, the Fast CV is not implemented as a measurement loop. That means
that the script cannot execute other commands during Fast CV. Measurement data is stored in arrays and can
be transmitted afterwards.

Arguments
I
Set potentials Array [out] The array to store the set potentials in.
(float)
Measured Array [out] The array to store the measured currents in.
currents (float)
Points count var [out] The number of measurement points. The VarType of the variable will be
(inf) set to VT_COUNT (ee)
Begin potential var/ literal The potential to start at (and eventually, to end at).
(float)
Vertex 1 potential var / literal The potential of the first point to change direction in
(float)
Vertex 2 potential var / literal The potential of the second point to change direction in.
(float)
Step potential var / literal The potential step size.
(float)
Scan rate var / literal The speed at which the scan is performed (in V/s).
(float)
The instrument will round its step size to its DAC resolution (see device description
document). As a result, the number of points can vary between instruments and may be
Page | 80

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

slightly different than expected. The actual number of points measured will be stored in the
Points count variable.

Optional arguments

For Fast CV, these optional arguments can be combined freely.

® add_meas

® nscans

® nscans_avg

® nscans_equil
nscans defines the number of scans to perform sequentially, the result is stored in the Current array. The first
and last measured sample are both measured at the begin potential for symmetry. Splitting the output into

multiple scans is quite straightforward. The number of samples per scan is equal to the total number of samples
divided by the number of scans.

Currents measured at the last point of one scan are copied and used as first point for the next scan. This is
done for convenience and avoids applying the same potential twice in a row.

index

0omVv Begin potential
1 1 1 100 mV Vertex 1 potential
2 2 1 0omV
& 3 1 -100 mV Vertex 2 potential
4 4 1 omVv Begin potential
5 4 2 omV Begin potential, copy of previous point,
no extra measurement.
6 5 2 100 mV Vertex 1 potential
7 6 2 0mV
8 7 2 -100 mV Vertex 2 potential
9 8 2 omVv Begin potential

nscans_equil steps through all vertexes, just like a regular CV scan. The equillibration scans do not measure the
current and are intended to prepare the cell before a the first scan.

nscans_avg takes the average of all points over multiple scans while making sure that every potential is set
exactly once. This allows averaging more samples to achieve a better signal-to-noise ratio, while still maintaining
a low step potential. However, care should be taken that these multiple scans overlap.

P 81
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example 1

The following example performs a Fast CV without optional arguments. It will start at O V, go to vertex 1 at 100
mV before going to -100 mV and back to 0 V. The step size is 10 mV and the scan rate is 1 V/s.

array potentials 41

array currents 41

var npoints

meas_fast_cv potentials currents npoints @ 100m -100m 10m 1

Example 2: nscans

The following example performs a Fast CV with nscans argument to perform 5 scans sequentially.

array potentials 205

array currents 205

var npoints

meas_fast_cv potentials currents npoints @ 100m -100m 10m 1 nscans(5)

Example 3: nscans_equil

The following example illustrates Fast CV with nscans_equil argument to perform 2 scans before actual
measurements. After the 2 equilibration scans, a single Fast CV scan is performed.

array potentials 41

array currents 41

var npoints

meas_fast_cv potentials currents npoints @ 100m -100m 10m 1 nscans_equil(2)

Example 4: nscans_avg

The following example performs a Fast CV with nscans_avg argument to perform averaging over 3 scans. The
format of potentials, currents and npoints variables is the same as if nscans_avg was not performed even
though the values are averaged.

array potentials 41

array currents 41

var npoints

meas_fast_cv potentials currents npoints @ 100m -100m 10m 1 nscans_avg(3)

Example 5: nscans_equil, nscans and nscans_avg

The following example performs a Fast CV with all 3 optional arguments. After equillibrating for 1 scan, 3 scans
are performed which are averaged twice each.

P 82
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

array potentials 123

array currents 123

var npoints

meas_fast_cv potentials currents npoints @ 100m -100m 10m 1 nscans_equil(1) nscans(3)
nscans_avg(2)

@ An example with an entire Fast CV script can be found in Section 15.4, “Fast CV example”.
-

14.10.4. meas_fast_ca

MethodSCRIPT =1.5

Supported instruments EmStat4, Nexus

Perform a Fast Chronoamperometry (FCA) measurement.

This command is similar to the meas_loop_ca command, which is a measurement loop command. However, the
fast measurement command is intended for short, (very) fast measurements with an accurate timing. The
maximum data rate is 1 MS/s (1 million samples per second), using an interval time of 1 pys. Measurement points
are averaged at maximum sample rate during the interval time, if possible. To achieve this, no other
MethodSCRIPT commands can be performed during the measurement, and the results must be stored in an
array. As a consequence, the number of data points to measure is limited to the maximum size of an array
(50,000 on the EmStat4).

The set_acquisition_frac command does not apply for Fast CA measurements. Measurements are
performed over the entire interval time.

Arguments
I
Set potential var [out] Variable to store the set potential in. This is a single value because the set
(float) potential is the same for all data points.
Measured array [out] Array to store the measured currents in. The array must be large enough
currents (float) to store all data points. The number of data points is determined by the
run time and interval time.
Points count var [out] Variable to store the number of measurement points in. The VarType of
(int) the variable will be set to VT_COUNT (ee).
DC potential var / literal The DC potential to set.
(float)
Interval time var / literal The interval time (i.e. the time between measurements). The minimum
(float) interval time is 1 ys. The maximum interval time is 1 minute.
Run time var / literal The total measurement time. This must be greater than or equal to the
(float) interval time.
Page | 83

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Optional arguments

The following optional arguments are supported:

® add_meas
On the Nexus, add_meas only supports channels 1, 2 and 3 for the meas_fast_ca command.
0 See Section B.7, “Measurement channels” for information on what can be measured on
these channels.
Example

The following example performs a Fast CA measurement of 1 ms with an interval time of 1 us and an applied
potential of 200 mV.

var potential

array currents 1000

var num_points

meas_fast_ca potential currents num_points 200m 1u Im

A more comprehensive example can be found in Section 15.5, “Fast CA example”.

14.10.5. meas_scp

MethodSCRIPT =>1.8

Supported instruments Nexus

Perform a Stripping Chronopotentiometry (SCP) measurement.

This command performs Stripping Chronopotemiometry also known as Potentiometric Stripping Analysis (PSA).
[t assumes this command is preceded by a deposition stage, where a potential has been applied for some time.

If the stripping current is set to O ampere then the cell will be switched off, and an OCP measurement will be
performed. After the measurement, the device will be potentiostatic mode, and the cell remains off. If the
stripping current is not O, the device will quickly switch to galvanostatic mode, apply the current, and measure
potential. After the measurement, it will remain in galvanostatic mode, and keep applying the current.

The measured potential over time should be monotonic: the potential should either only go up, or only go down.

Several things can be done to reduce the time to switch to galvanostatic mode:

® Set the range of VT_CELL_SET_CURRENT to the same value as VT_CURRENT .

e |ncrease max bandwidth: this will reduce settling time.

The result is the inverse derivative dt / dE. This value is calculated for each potential interval: a bin. The width of
a bin can be calculated by: (bins_end_potential - bins_start_potential) / bin_count. The center
potential of a bin can be calculated by: bins_start_potential + bin_width / 2 + index * bin_width. Where
index is the index of the bins array, starting at O.

Page | 84
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

A more detailed explanation on this technique can be found on the PalmSens knowledge base.

Arguments
T
Derivative bins array [out] Array to store the derivative dt / dE values in. The VarType of will be set to
(int) VT_DT_DE . The range and status of VT_POTENTIAL will be added.
Bin count var [out] Variable to store the number of derivative bins in. The VarType of the
(int) variable will be set to VT_COUNT .
Bins start var [out] Variable to store the lowest potential of the first bin. The range of
potential (float) VT_POTENTIAL will be added.
Bins end var [out] Variable to store the highest potential of the last bin. The range of
potential (float) VT_POTENTIAL will be added.
Set current var [out] Variable variable to store the set current in. The set current is the actual
(float) current setpoint, which is close to the specified stripping current, but
rounded to the nearest achievable current based on the device resolution.
Stripping current var / literal The stripping current to apply, as absolute value. The sign of the current
(float) will be picked such that the potential goes towards the end potential. If
this is 0, an OCP measurement will be performed.
End potential var / literal The measurement will stop when the measured potential has passed the
(float) end potential.
Run time var / literal The maximum measurement time, in case the end potential is not
(float) reached. This should be maximum 2100 seconds (35 minutes).

Optional arguments

No optional arguments are supported.

Example

The following example performs a SCP measurement using a 1mA stripping current, an end potential of 0.5V,
and a maximum measurement time of 10s.

array bins 4096

var bin_count

var bins_start_pot

var bins_end_pot

var current

meas_scp bins bin_count bins_start_pot bins_end_pot current 1m 500m 10

A more elaborate example can be found in Section 15.6, “SCP example”.

P 85
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-article/stripping-chronopotentiometry-scp-or-psa

MethodSCRIPT manual

Last document update: 2025-10-15

14.11. Measurement loops

14.11.1. set_scan_dir

MethodSCRIPT >1.5

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Reverse the direction of the CV scan.

This command allows the CV loop to skip some portion of its potential sweep and change direction early. If the
loop is already stepping in the desired direction, this command does nothing.

Arguments
T
Direction var / literal >0: Set the loop to increase the potential with each step
(int/float) <0: Set the loop to decrease the potential with each step
0: Set the loop to reverse its direction
When using this command with Direction equal to O, care must be taken to avoid double
é reversals on successive loop iterations. If possible, a value greater than O or less than O
should be used instead.
Example

var current

var potential

meas_loop_cv potential current @ 1 -1 100m 1
if current > 10m

If more than 10 mA current, start scanning downwards immediately
set_scan_dir -1

endif

pck_start

pck_add potential

pck_add current

pck_end

endloop

14.11.2. meas_loop_lIsv

MethodSCRIPT >1.1
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Perform a Linear Sweep Voltammetry (LSV) measurement. An LSV measurement scans a potential range in

small steps and measures the current at each step. A more detailed explanation on this technique can be found
on the PaimSens knowledge base.

P 86
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-article/linear-sweep-voltammetry-lsv

MethodSCRIPT manual

Last document update: 2025-10-15

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for information about measurement loops in general.

Arguments
e I
Set potential var [out] Output variable to store the set potential for this iteration.
(float)
Measured var [out] Output variable to store the measured current in.
current (float)
Begin potential var/ literal The begin potential for the LSV technique.
(float)
End potential var / literal The end potential for the LSV technique.
(float)
Step potential var / literal The potential increase for each step. Affects the amount of data points
(float) per second, together with the scan rate. This is an absolute step. The
direction of the scan is determined by "Begin potential* and "End
potential”.
Scan rate var / literal The scan rate of the LSV technique. This is the speed at which the
(float) applied potential is ramped in V/s. Can only be positive.
The set potential is not measured. The actually applied potential may clip if the set potential
is outside the supported range.

Optional arguments

The following optional arguments are supported:

® add_meas

® poly_we (deprecated)

Example

Perform an LSV measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. The LSV performs a potential sweep from -500 mV to 500 mV with steps of 10
mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per second.

meas_loop_lsv potential current -500m 500m 10m 100m
pck_start

pck_add potential

pck_add current

pck_end

endloop

P 87
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

14.11.3. meas_loop_acv

MethodSCRIPT >1.5

Supported instruments EmStat4, Nexus

Perform a AC Voltammetry (ACV) measurement. In a ACV measurement, a potentialscan is performed with a
superimposed sine wave. At each step, the ac-potential and ac-current are measured and the complex

impedance is calculated.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information.

Arguments

I

Measured DC var [out]
potential (float)

Measured DC var [out]
current (float)

Measured AC var [out]
potential (float)

Measured AC var [out]
current (float)

Measured Z-real var [out]

(float)
Measured Z- var [out]
imaginary (float)

Begin potential var/ literal

(float)
End potential var / literal
(float)
Step potential var / literal
(float)
Scan rate var / literal
(float)
Amplitude var / literal
(float)
Frequency var / literal
(float)

Page | 88

Qutput variable to store the measured DC potential for this iteration.
Output variable to store the measured DC current for this iteration.
Output variable to store the measured AC potential for this iteration.
Output variable to store the measured AC current for this iteration.

QOutput variable to store the real part of the measured complex
impedance. This field also contains the metadata of the I-signal (current)

Output variable to store the imaginary part of the measured complex
impedance. This field also contains the metadata of the E-signal
(potential)

The begin potential for the potential scan.
The end potential for the potential scan.

The potential increase for each step. This is an absolute step that does
not affect the direction of the scan.

The scan rate of the ACV technique. This is the speed at which the
applied potential is ramped in V/s. Can only be positive.

Sine wave amplitude in RMS voltage.

Sine wave frequency in Hz. This must be chosen such that 4 cycles at
this frequency fit in each step period. The step period may be calculated
as the step potential divided by the scan rate.

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

meas_loop_acv dc_pot dc_cur ac_pot ac_cur z_real z_imag -500m 500m 10m 20m 10m 15
pck_start

pck_add dc_pot

pck_add ac_cur

pck_end

endloop

Perform an ACV measurement and send a data packet for every iteration, with each packet containing the set
potential and AC current.

The ACV performs a potential scan from -500 mV to 500 mV with steps of 10 mV, a scanrate of 20 mV/s and an
amplitude of 10 mV at 15 Hz. This results in a total of 101 data points at a rate of 2 points per second.

14.11.4. meas_loop_lIsp

MethodSCRIPT >1.3
Supported instruments EmStat4, Nexus
Perform a Linear Sweep Potentiometry (LSP) measurement. An LSP measurement scans a range of currents in

small steps and measures the potential at each step. Galvanostatic PGStat mode (6) is required for LSP. A more
detailed explanation on this technique can be found on the PalmSens knowledge base.

The resolution and maximum of the output current depend on the selected current range.
Make sure to set the expected range before starting the LSP measurement.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
T
Measured var [out] QOutput variable to store the measured potential in.
potential (float)
Current setpoint var [out] Output variable to store the set current for this iteration.
(float)
Begin current var / literal The begin current for the LSP technique.
(float)
End current var / literal The end current for the LSP technique.
(float)
Step current var / literal The current increase for each step. Affects the amount of data points per
(float) second, together with the scan rate. This is an absolute step. The
direction of the scan is determined by "Begin current" and "End current".
Page | 89

£ PalmSens

https://www.palmsens.com/knowledgebase-article/linear-sweep-potentiometry-lsp

MethodSCRIPT manual
Last document update: 2025-10-15

I

Scan rate var / literal The scan rate of the LSP technique. This is the speed at which the
(float) applied current is ramped in A/s. Can only be positive.

Optional arguments

The following optional arguments are supported:

® add_meas

Example

Perform an LSP measurement and send a data packet for every iteration. The data packet contains the set
current and measured potential. The LSP performs a current sweep from -5 mA to 5 mA with steps of 100 pA at
a rate of 1 mA/s. This results in a total of 101 data points at a rate of 10 points per second.

meas_loop_lsp potential current -5m 5m 100u Im
pck_start

pck_add current

pck_add potential

pck_end

endloop

14.11.5. meas_loop_cv

MethodSCRIPT =1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a Cyclic Voltammetry (CV) measurement. In a CV measurement, the potential is stepped from the begin
potential to the vertex 1 potential, then the direction is reversed and the potential is stepped to the vertex 2
potential and finally the direction is reversed again and the potential is stepped back to the begin potential. The
current is measured at each step. A more detailed explanation on this technique can be found on the PalmSens
knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
e
Set potential var [out] Output variable to store the set potential for this iteration.
(float)
Measured var [out] Output variable to store the measured current in.
current (float)
Page | 90

£ PalmSens

https://www.palmsens.com/knowledgebase-article/cyclic-voltammetry
https://www.palmsens.com/knowledgebase-article/cyclic-voltammetry

MethodSCRIPT manual
Last document update: 2025-10-15

I

Begin potential var/ literal The begin potential for the CV technique.
(float)

Vertex 1 potential var / literal The vertex 1 potential. First potential where direction reverses.
(float)

Vertex 2 potential var / literal The vertex 2 potential. Second potential where direction reverses.
(float)

Step potential var / literal The potential increase for each step. Affects the amount of data points
(float_) per second, together with the scan rate. This is an absolute step that

does not affect the direction of the scan.

Scan rate var / literal The scan rate of the CV technique. This is the speed at which the applied
(float) potential is ramped in V/s. Can only be positive.

Optional arguments

The following optional arguments are supported:

® add_meas
® poly_we (deprecated)

® nscans

Example

Perform a CV measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. The CV performs a potential scan from O mV to 500 mV to -500 mV to 0 mV. It
steps with 10 mV increments at a rate of 100 mV/s. This results in a total of 201 data points at a rate of 10
points per second.

meas_loop_cv potential current @ 500m -500m 10m 100m
pck_start

pck_add potential

pck_add current

pck_end

endloop

14.11.6. meas_loop_dpv

MethodSCRIPT =1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a Differential Pulse Voltammetry (DPV) measurement. In a DPV measurement, the potential is stepped
from the begin potential to the end potential. At each step, the current (reverse current) is measured, then a
potential pulse is applied and the current (forward current) is measured. The forward current minus the reverse
current is stored in the "Measured current” variable. A more detailed explanation on this technique can be found

P <}
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

on the PaimSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
Set potential var [out] Output variable to store the set potential for this iteration.
(float)
Measured var [out] QOutput variable to store "forward current — reverse current” in.
current (float)
Begin potential var/ literal The begin potential for the potential scan.
(float)
End potential var / literal The end potential for the potential scan.
(float)
Step potential var / literal The potential increase for each step. Affects the amount of data points
(float) per second, together with the scan rate. This is an absolute step that
does not affect the direction of the scan.
Pulse potential var / literal The potential of the pulse. This is added to the currently applied potential
(float) during a step. Pulse potential must be an absolute value, the direction of
the pulse depends on scan direction.
Pulse time var / literal The time the pulse should be applied.
(float)
Scan rate var / literal The speed at which the applied potential is ramped in V/s. Can only be
(float) positive. Scan rate must be lower than "Step potential / Pulse time / 2".
On the EmStat Pico and Sensit Wearable, pulse time may not be larger than 50% of the
iteration, otherwise the instrument will throw an error.

Optional arguments
The following optional arguments are supported:
® add_meas

® poly_we (deprecated)

Both add_meas and poly_we will report the measured value at the pulse minus the measured value just before
the pulse: forward - reverse.

Example

Perform a DPV measurement and send a data packet for every iteration. The data packet contains the set
potential and "forward current — reverse current". The DPV performs a potential scan from -500 mV to 500 mV
with steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per

P 92
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-article/differential-pulse-voltammetry-dpv/

MethodSCRIPT manual

Last document update: 2025-10-15

second. At every step a pulse of 20 mV is applied for 5 ms.

meas_loop_dpv potential current -500m 500m 10m 20m 5m 100m
pck_start

pck_add potential

pck_add current

pck_end

endloop

14.11.7. meas_loop_swv

MethodSCRIPT =1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a Square Wave Voltammetry (SWV) measurement. In a SWV measurement, the potential is stepped
from the begin potential to the end potential. At each step, the current (reverse current) is measured, then a
potential pulse is applied and the current (forward current) is measured. The forward current minus the reverse
current is stored in the "Measured current" variable. The pulse length is "1 / Frequency / 2". A more detailed
explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
e
Set potential var [out] Output variable to store the set potential for this iteration.
(float)
Measured var [out] Output variable to store "forward current — reverse current” in.
current (float)
Output forward var [out] QOutput variable to store forward current in.
current (float)
Output reverse var [out] QOutput variable to store reverse current in.
current (float)
Begin potential var / literal The begin potential for the potential scan.
(float)
End potential var / literal The end potential for the potential scan.
(float)
Step potential var / literal The potential increase for each step. This is an absolute step that does
(float) not affect the direction of the scan.
Amplitude var / literal The amplitude of the pulse. This value times 2 is added to the currently
potential (float) applied potential during a step.
Page | 93

£ PalmSens

https://www.palmsens.com/knowledgebase-article/square-wave-voltammetry-swv

MethodSCRIPT manual
Last document update: 2025-10-15

I

Frequency var / literal The frequency of the pulses.
(float)

Optional arguments

The following optional arguments are supported:

® add_meas

® poly_we (deprecated)

Both add_meas and poly_we will report the measured value at the pulse minus the measured value just before
the pulse: forward - reverse.

Example

Perform a SWV measurement and send a data packet for every iteration. The data packet contains the set
potential and "forward current — reverse current”". The SWV performs a potential scan from -500 mV to 500 mV
with steps of 10 mV at a frequency of 10 Hz. This results in a total of 101 data points at a rate of 10 points per
second. At every step a pulse of 30 mV (2 * 15 mV) is applied for 50 ms (1/Frequency/2).

meas_loop_swv potential current forward reverse -500m 500m 10m 15m 10
pck_start

pck_add potential

pck_add current

pck_end

endloop

14.11.8. meas_loop_npv

MethodSCRIPT =11

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a Normal Pulse Voltammetry (NPV) measurement. In an NPV measurement, the pulse potential is
stepped from the begin potential to the end potential. At each step the pulse potential is applied and the current
is measured at the top of this pulse. The potential is then set back to the begin potential until the next step. The
measured current is stored in the "Output current" variable. A more detailed explanation on this technique can
be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Page | 94
age| £ PalmSens

https://www.palmsens.com/knowledgebase-article/normal-pulse-voltammetry-npv

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments

Set potential var [out]
(float)

Measured var [out]

current (float)

Begin potential var/ literal
(float)

End potential var / literal
(float)

Step potential var / literal
(float)

Pulse time var / literal
(float)

Scan rate var / literal
(float)

Optional arguments

I

Output variable to store the pulse potential for this iteration.

Output variable to store the measured current in.

The base potential on which each iteration creates a step.

The potential of the last pulse.

The pulse potential increase for each step. Affects the amount of data
points per second, together with the scan rate. This is an absolute step
that does not affect the direction of the scan.

The time the pulse should be applied.

The speed at which the applied potential is ramped in V/s. Can only be
positive. Scan rate must be lower than "Step potential / Pulse time / 2".

The following optional arguments are supported:

® add_meas

® poly_we (deprecated)

Example

Perform an NPV measurement and send a data packet for every iteration. The data packet contains the set
potential and measured pulse current. The NPV performs a potential scan from -500 mV to 500 mV with steps
of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per second. At
every step a potential pulse of "step index * step potential" mV is applied for 5ms.

meas_loop_npv potential current -500m 500m 10m 20m 100m

pck_start

pck_add potential
pck_add current
pck_end

endloop

14.11.9. meas_loop_ca

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Page | 95

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Perform a Chronoamperometry (CA) measurement. In a CA measurement, a DC potential is applied and the
current is measured at the specified interval. The measured current is stored in the "Output current” variable. A
more detailed explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
e N
Set potential var [out] Output variable to store the set potential for this iteration. The set
(float) potential is the DC potential setpoint, rounded to the nearest achievable
potential based on the device resolution.
Measured var [out] Qutput variable to store the measured current in.
current (float)
DC potential var / literal The DC potential to be applied.
(float)
Interval time var / literal The interval between measured data points.
(float)
Run time var / literal The total run time of the measurement.
(float)

Optional arguments

The following optional arguments are supported:

® add_meas

® poly_we (deprecated)

Example

Perform a CA measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. A DC potential of 100 mV is applied. The current is measured every 100 ms for
a total of 2 seconds. This results in a total of 20 data points at a rate of 10 points per second.

meas_loop_ca potential current 100m 100m 2
pck_start

pck_add potential

pck_add current

pck_end

endloop

14.11.10. meas_loop_ca_alt_mux

MethodSCRIPT >1.5

P 96
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-article/chronoamperometry-ca

MethodSCRIPT manual

Last document update: 2025-10-15

Supported instruments EmStat4, Nexus

Perform a Chronoamperometry (CA) measurement in alternating multiplexer mode. In a CA measurement, a DC
potential is applied and the current is measured at the specified interval. A more detailed explanation on this
technique can be found on the PaimSens knowledge base.

During the interval time, all selected multiplexer channels are measured for an equal amount of time. The
measured current is stored in the "Output current" array. This array should be large enough to hold all sampled
multiplexer channels. Before this alternating multiplexer command can be used, the multiplexer has to be
configured using mux_config.

Some settling time (5 ms) is required after switching a multiplexer channel, make sure the
interval time is long enough.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
Set potential var [out] Output variable to store the set potential for this iteration. The set
(float) potential is the DC potential setpoint, rounded to the nearest achievable
potential based on the device resolution.
Measured Array [out] Output array to store the measured currents for the current iteration. The
currents (float) first value in the array is the measured current on the first multiplexer
channel.
DC potential var / literal The DC potential to be applied.
(float)
Interval time var / literal The interval between measured data points. Note that the time per
(float) multiplexer channel is the interval time divided by the number of
multiplexer channels.
Run time var / literal The total run time of the measurement.
(float)
First multiplexer var / literal The first multiplexer channel to measure (starting at 1).
channel (int)
Last multiplexer var / literal The last multiplexer channel to measure (starting at 1).
channel (int)

Optional arguments

The following optional arguments are supported:

® add_meas

P 97
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-article/chronoamperometry-ca

MethodSCRIPT manual

Last document update: 2025-10-15

Example

The following example performs a CA measurement on multiplexer channels 1 to 3. Apply a potential of 1V, use
an interval of 300 ms, and run for 9 seconds.

var potential

var time

array currents 3

NB: first configure the multiplexer using "mux_config"
timer_start

meas_loop_ca_alt_mux potential currents 1 300m 9000m 1i 3i
timer_get time

pck_start

pck_add time

pck_add potential

pck_add currents[0i]

pck_add currents[1i]

pck_add currents[2i]

pck_end

endloop

14.11.11. meas_loop_cp

MethodSCRIPT =1.3

Supported instruments EmStat4, Nexus

Perform a Chronopotentiometry (CP) measurement. In a CP measurement, a DC current is applied and the
potential is measured at the specified interval. The measured potential is stored in the "Output potential”
variable. Galvanostatic PGStat mode (6) is required for CP. A more detailed explanation on this technique can be
found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
e
Measured var [out] Output variable to store the measured potential for this iteration.
potential (float)
Set current var [out] Output variable to store the set current in. The set current is the actual
(float) current setpoint, which is close to the specified DC current, but rounded
to the nearest achievable current based on the device resolution.
DC current var / literal The DC current to be applied.
(float)
Interval time var / literal The interval between measured data points.
(float)
Page | 98

£ PalmSens

https://www.palmsens.com/knowledgebase-article/chronopotentiometry-cp

MethodSCRIPT manual
Last document update: 2025-10-15

I

Run time var / literal The total run time of the measurement.
(float)

Optional arguments

The following optional arguments are supported:

® add_meas

Example

Perform a CP measurement and send a data packet for every iteration. The data packet contains the measured
potential and set current. A DC current of 1 mA is applied. The potential is measured every 100 ms for a total of
2 seconds. This results in a total of 20 data points at a rate of 10 points per second.

meas_loop_cp potential current 1m 100m 2
pck_start

pck_add current

pck_add potential

pck_end

endloop

14.11.12. meas_loop_cp_alt_mux

MethodSCRIPT =1.5

Supported instruments EmStat4, Nexus

Perform a Chronopotentiometry (CP) measurement in alternating multiplexer mode. In a CP measurement, a DC
current is applied and the potential is measured at the specified interval. Galvanostatic PGStat mode (6) is
required for CP. A more detailed explanation on this technique can be found on the PalmSens knowledge base.

During the interval time, all selected multiplexer channels are measured for an equal amount of time. The
measured potential is stored in the "Output potential" array. This array should be large enough to hold all
sampled multiplexer channels. Before this alternating multiplexer command can be used, the multiplexer has to
be configured using mux_config.

Some settling time (5 ms) is required after switching a multiplexer channel, make sure the
interval time is long enough.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

P 99
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-article/chronopotentiometry-cp

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
e
Measured Array [out] Output array to store the measured potentials for the current iteration.
potentials (float) The first value in the array is the measured potential on the first

multiplexer channel.

Set current var [out] Output variable to store the set current for this iteration. The set current is
(float) the actual current setpoint, which is close to the specified DC current, but
rounded to the nearest achievable current based on the device resolution.

DC current var / literal The DC current to be applied.
(float)

Interval time var / literal The interval between measured data points. Note that the time per
(float) multiplexer channel is the interval time divided by the number of

multiplexer channels.

Run time var / literal The total run time of the measurement.

(float)
First multiplexer var / literal The first multiplexer channel to measure (starting at 1).
channel (int)
Last multiplexer var/ literal The last multiplexer channel to measure (starting at 1).
channel (int)

Optional arguments

The following optional arguments are supported:

® add_meas

Example

The following example performs a CP measurement on multiplexer channels 1 to 3. Apply a current of 1 UA, use
an interval of 300 ms, and run for 9 seconds.

var current

var time

array potentials 3

NB: first configure the multiplexer using "mux_config"
timer_start

meas_loop_cp_alt_mux potentials current Tu 300m 9000m 11 3i
timer_get time

pck_start

pck_add time

pck_add current

pck_add potentials[@i]

pck_add potentials[1i]

pck_add potentials[2i]

pck_end

P 100
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

endloop

14.11.13. meas_loop_pad

MethodSCRIPT =1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a Pulsed Amperometric Detection (PAD) measurement. In a PAD measurement, potential pulses are
periodically applied. Each iteration starts at the DC potential, the current is measured before the pulse (iy,). Then
the pulse potential is applied, and the current is measured at the end of the pulse (i,,s). The output current
returns a current value depending of one the 3 modes: dc (iq), pulse (i) OF differential (ipuse — iae). A More
detailed explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
T
Set potential var [out] QOutput variable to store the set potential for this iteration. The set
(float) potential is the potential setpoint, rounded to the nearest achievable
potential based on the device resolution. The reported potential depends
on the mode used:
DC mode: Eg4,
Pulse mode: E, .
Differential mode: E, e - Eqc
Measured var [out] Output variable, content depending on the value of the mode parameter
current (float) DC mode: g,
Pulse mode: iy
Differential mode: ipyse - e
DC potential var / literal The DC potential for the potential scan.
(float)
Pulse potential var / literal The potential of the pulse. This is the potential that is set during a pulse. It
(float) is not referenced to the DC potential.
Pulse time var / literal The time the pulse should be applied.
(float)
Interval time var / literal The time of the pulse interval
(float)
Run time var / literal Total run time of the measurement
(float)
mode uint8 1=DC
2 = Pulse
3 = Differential
Page | 101

£ PalmSens

https://www.palmsens.com/knowledgebase-article/pulsed-amperometric-detection-pad

MethodSCRIPT manual

Last document update: 2025-10-15

Optional arguments

The following optional arguments are supported:

® add_meas

® poly_we (deprecated)
Both add_meas and poly_we will report the measured value the same way as the measured current:

e DC mode: measured value before the pulse.
e Pulse mode: measured value at the end of the pulse.

e Differential mode: DC - pulse.

Example

Perform a PAD measurement and send a data packet for every iteration. The data packet contains the set
potential and measured current. A DC potential of 500 mV is applied. A pulse potential of 1500mV is applied
every 50 ms for 10 ms and the current is measured on the pulse (mode = pulse). The measurement is 10,05
seconds in total. This results in a total of 201 data points at a rate of 20 points per second.

meas_loop_pad potential current 500m 1500m 10m 50m 10050m 2
pck_start

pck_add potential

pck_add current

pck_end

endloop

14.11.14. meas_loop_ocp

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform an Open Circuit Potentiometry (OCP) measurement. In an OCP measurement, the CE is disconnected
so that no potential is applied. Therefore, the cell needs to be turned off (using the cell_off command) before
starting this measurement. The open circuit RE potential is measured at the specified interval. The measured
potential is stored in the "Output potential" variable. A more detailed explanation on this technique can be found
on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
I
Measured var [out] Output variable to store the measured RE potential in.
potential (float)
Page | 102

£ PalmSens

https://www.palmsens.com/knowledgebase-topic/ocp/

MethodSCRIPT manual
Last document update: 2025-10-15

I

Interval time var / literal The interval between measured data points.
(float)

Run time var / literal The total run time of the measurement.
(float)

Optional arguments

The following optional arguments are supported:

® add_meas

Example

Perform an OCP measurement and send a data packet for every iteration. The data packet contains the
measured RE potential. The RE potential is measured every 100 ms for a total of 2 seconds. This results in a
total of 20 data points at a rate of 10 points per second.

meas_loop_ocp potential 100m 2
pck_start

pck_add potential

pck_end

endloop

14.11.15. meas_loop_ocp_alt_mux

MethodSCRIPT =1.5

Supported instruments EmStat4, Nexus

Perform an Open Circuit Potentiometry (OCP) measurement in alternating multiplexer mode. In an OCP
measurement, the CE is disconnected so that no potential is applied. Therefore, the cell needs to be turned off
(using the cell_off command) before starting this measurement. A more detailed explanation on this technique
can be found on the PalmSens knowledge base.

During the interval time, all selected multiplexer channels are measured for an equal amount of time. The
measured potential is stored in the "Output potential" array. This array should be large enough to hold all
sampled multiplexer channels. Before this alternating multiplexer command can be used, the multiplexer has to
be configured using mux_config.

Some settling time (5 ms) is required after switching a multiplexer channel, make sure the
interval time is long enough.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments

P 103
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-topic/ocp/

MethodSCRIPT manual
Last document update: 2025-10-15

I

Measured Array [out] Output array to store the measured potentials for the current iteration.
potentials (float) The first value in the array is the measured potential on the first
multiplexer channel.

Interval time var / literal The interval between measured data points. Note that the time per
(float) multiplexer channel is the interval time divided by the number of
multiplexer channels.

Run time var / literal The total run time of the measurement.

(float)
First multiplexer var / literal The first multiplexer channel to measure (starting at 1).
channel (int)
Last multiplexer var/ literal The last multiplexer channel to measure (starting at 1).
channel (int)

Optional arguments

The following optional arguments are supported:

® add_meas

Example

The following example performs an OCP measurement on multiplexer channels 1 to 3. Use an interval of 300
ms, and run for 9 seconds.

array potentials 3

var time

NB: first configure the multiplexer using "mux_config"
timer_start

meas_loop_ocp_alt_mux potentials 300m 9000m 1i 3i
timer_get time

pck_start

pck_add time

pck_add potentials[@i]

pck_add potentials[1i]

pck_add potentials[2i]

pck_end

endloop

14.11.16. meas_loop_eis

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Perform a (potentiostatic) Electrochemical Impedance Spectroscopy (EIS) measurement.

Page | 104
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Perform a frequency scan and store the resulting Z-real and Z-imaginary in the given variables. High speed
potentiostatic PGStat mode is required for EIS. The following commands currently have no effect on EIS
measurements:

® set_max_bandwidth: bandwidth is taken from frequency scan ranges.

® set_pot_range : pot range is taken from amplitude and DC potential arguments.

A more detailed explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
T
Applied var [out] Output variable to store the applied frequency (Hz) for this iteration.
frequency (float)
Measured Z-real var [out] Output variable to store the real part of the measured complex
(float) impedance. This field also contains the metadata of the I-signal (current)
Measured Z- var [out] Qutput variable to store the imaginary part of the measured complex
imaginary (float) impedance. This field also contains the metadata of the E-signal
(potential)
Amplitude var / literal Amplitude of the applied sine wave in Vs
(float)
Start frequency var/ literal Start frequency of the scan in Hz
(float)
End frequency var / literal End frequency of the scan in Hz
(float)
Nr of points var / literal Number of frequency points to be scanned.
(int, float)
DC potential var / literal DC potential offset of the applied sine wave in Volt.
(float)

Optional arguments
The following optional arguments are supported:
® eis_tdd
® eis_opt
® eis_acdc
Example
Perform an EIS frequency scan from 100 kHz to 100 Hz with 10 mV amplitude and 200 mV DC offset. The

frequency for each iteration is returned in variable freq. The measured complex impedance is returned in 2

P 105
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-article/electrochemical-impedance-spectroscopy-eis

MethodSCRIPT manual

Last document update: 2025-10-15

variables with Z-real in z_real and Z-imaginary in z_imag . In total, 11 points will be measured at frequencies
between 100 kHz and 100 Hz, divided on a logarithmic scale.

mode 3= high speed mode

set_pgstat_mode 3

meas_loop_eis freq z_real z_imag 10m 100k 100 111 200m
pck_start

pck_add freq

pck_add z_real

pck_add z_imag

pck_end

endloop

14.11.17. meas_loop_eis_dual

MethodSCRIPT >1.7

Supported instruments Nexus

Perform a dual (potentiostatic) Electrochemical Impedance Spectroscopy (EIS) measurement.

Similar to meas_loop_eis, but measures an extra signal, resulting in a second impedance being measured.

Arguments
Mode uint8 1 = Bipot: the second impedance is E / BiPot
2 = RE vs second sense : the second impedance is S2 / |
3 = SE vs second sense : the second impedance is S2 / |
Applied var [out] Output variable to store the applied frequency (Hz) for this iteration.
frequency (float)
Measured Z-real var [out] Output variable to store the real part of the measured complex
(float) impedance. This field also contains the metadata of the I-signal (current).
Measured Z- var [out] QOutput variable to store the imaginary part of the measured complex
imaginary (float) impedance. This field also contains the metadata of the E-signal
(potential).
Second var [out] Output variable to store the real part of the second measured complex
measured Z-real (float) impedance.
This field also contains the metadata of:
mode 1: The measured bipot current.
mode 2, or 3: The I-signal (current).
Second var [out] QOutput variable to store the imaginary part of the second measured
measured Z- (float) complex impedance.
imaginary This field also contains the metadata of:
mode 1: The E-signal (potential).
mode 2, or 3: The measured second sense potential.
Page | 106

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

Amplitude var / literal Amplitude of the applied sine wave in V.
(float)

Start frequency var/ literal Start frequency of the scan in Hz.
(float)

End frequency var / literal End frequency of the scan in Hz.
(float)

Nr of points var / literal Number of frequency points to be scanned.

(int, float)

DC potential var / literal DC potential offset of the applied sine wave in Volt.
(float)

Optional arguments

The following optional arguments are supported:

® eis_opt
® eis_dual_acdc

® eis_dual_tdd

Example

Perform a dual EIS frequency scan from 100 kHz to 100 Hz with 10 mV amplitude and 200 mV DC offset. We
use mode 1, measuring the BiPot current as third signal. The frequency for each iteration is returned in variable
freq. The measured complex impedance is returned in 2 variables with Z-real in z_r and Z-imaginary in z_i . The
measured complex impedance of the BiPot is returned in 2 variables with Z-real in b_r and Z-imaginaryin b_i . In
total, 11 points will be measured at frequencies between 100 kHz and 100 Hz, divided on a logarithmic scale.

var freq

var z_r

var z_i

var b_r

var b_i
set_pgstat_mode 3
set_bipot_mode 2
cell_on
meas_loop_eis_dual 1 freq z_r z_i b_r b_i 10m 100k 100 11i 200m
pck_start

pck_add freq
pck_add z_r
pck_add z_i
pck_add b_r
pck_add b_i
pck_end

endloop
on_finished:

P 107
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

cell_off

14.11.18. meas_loop_geis

MethodSCRIPT >1.3

Supported instruments EmStat4, Nexus

Perform a Galvanostatic Electrochemical Impedance Spectroscopy (GEIS) measurement.

Perform a frequency scan and store the resulting Z-real and Z-imaginary in the given variables. Galvanostatic
PGStat mode (6) is required for GEIS. The following commands currently have no effect on GEIS measurements:

® set_max_bandwidth: bandwidth is taken from frequency scan ranges.

® set_pot_range: pot range is taken from amplitude and DC potential arguments.
A more detailed explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter
6, Measurement loop commands for more information about measurement loops in general.

Arguments
e I
Output frequency var [out] Output variable to store the applied frequency (in Hz) for this iteration.
(float)
Output Z-real var [out] Output variable to store the real part of the measured complex
(float) impedance. This field also contains the metadata of the I-signal (current).
Output Z- var [out] QOutput variable to store the imaginary part of the measured complex
imaginary (float) impedance. This field also contains the metadata of the E-signal
(potential).
Amplitude var / literal Amplitude of the applied sine wave in A, .
(float)
Start frequency var/ literal Start frequency of the scan in Hz.
(float)
End frequency var / literal End frequency of the scan in Hz.
(float)
Nr of points var / literal Number of frequency points to be scanned.
(int, float)
DC current var / literal DC current offset of the applied sine wave in ampere
(float)
Exceeding the maximum amplitude will throw an error, see Appendix B, Device-specific
information for the maximum amplitude.
Page | 108

£ PalmSens

https://www.palmsens.com/knowledgebase-article/electrochemical-impedance-spectroscopy-eis

MethodSCRIPT manual

Last document update: 2025-10-15

Optional arguments

The following optional arguments are supported:
® eis_tdd
® eis_opt

® eis_acdc

Example

Perform an GEIS measurement at frequency freq with 10 mA,,s amplitude and 25mA DC offset. The measured
complex impedance is returned in 2 variables with Z-real in z_r and Z-imaginary in z_i . In total, 11 points will be
measured at frequencies between 100 kHz and 100 Hz, divided on a logarithmic scale.

mode 6= galvanostatic

set_pgstat_mode 6

meas_loop_geis freq z_r z_i 10m 100k 100 111 25m
pck_start

pck_add freq

pck_add z_r

pck_add z_i

pck_end

endloop

14.12. Script output

14.12.1. pck_start
MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Start a measurement data packet. Up to 129 variables can be added to the packet using the pck_add
command. The complete packet is transmitted with the pck_end command.

Arguments

Optional arguments

The following optional arguments are supported:

®* meta_msk

P 109
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Signal the start of a new measurement data package.

pck_start

14.12.2. pck_add

MethodSCRIPT =>1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Add a variable (or literal) to the measurement data package previously started with pck_start .

Arguments
N
Variable var / literal The variable to add to the data package.
(int, float)
Example

Add variable i to the measurement data package.

pck_add i

14.12.3. pck_end

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Send the measurement data package previously started with pck_start, containing all variables added using
pck_add . The pck_end command may be called only once after each pck_start command.

Arguments

Example

Signal the end of a measurement data package.

pck_end

P 110
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

14.12.4. file_open

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Open a file on the persistent storage. This file can be used to store script output to, using the
set_script_output command.

@ To include variables in your string, see Section 8.7.1, “Interpolated strings”
| 4
Arguments
I
Path string The path to the file to open. The path may include folders. Folder names

are separated by a slash (/). As of MethodSCRIPT version 1.5: With
mode 2, a counter will be added where "&i" is in the path. This counter
will be increased until a file with that path does not exist.

Open mode uint8 0 = Create new file. If a file with the same name exists, it is overwritten.
1 = Create new file. If a file with the same name exists, new data is
appended to it.

2 = Create new file. If a file with the same name exists, the file is not
opened and an error is returned.

Example

Create a new file named "measurement<count>.txt", where <count> is a counter that increases to make the
filename unique.

file_open "measurement&i.txt" 2

14.12.5. file_close

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Close the currently open file. If output to file was enabled (see set_script_output), it will be disabled.

If no file is open, this command has no effect.

Arguments

P 111
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Close the currently open file.

file_close

14.12.6. set_script_output
MethodSCRIPT >1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Set the output mode for the script. This affects where the measurement data packages and other script output
are sent to.

Arguments
Name Thpe ool
Output mode uint8 0 = Disable the output of the script completely.

1 = Output to the normal output channel (default).
2 = Qutput to file storage.
3 = Output to both normal channel and file storage.

Output to file storage is only allowed when a file is currently open, otherwise an error occurs.

Example

Set the script output to be directed to file storage and normal output.

set_script_output 3

14.12.7. send_string
MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Send an arbitrary string as output of the MethodSCRIPT. This string is prepended by a T, which is the text
package identifier.

@ To include variables in your string, see Section 8.7.1, “Interpolated strings”
w

P 112
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments

e I
Text string The text to send.

Example

Send the text "hello world".

send_string "hello world"

Output:

Thello world

14.13. Ranging

14.13.1. set_pot_range (deprecated)

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Set the expected potential range for the following measurements. Some devices cannot apply their full potential
range in one measurement, but need to be set up beforehand to reach these potentials. This command lets you
communicate to the device what the voltage range is you expect in your measurement. The device will
automatically configure itself to be able to reach these potentials.

This is a device-specific command. Currently only the EmStat Pico and Sensit Wearable require this command
to reach its full potential range. The dynamic potential window is dependent on the PGStat mode and is defined
in Section B.1, “PGStat mode properties”.

° The set_pot_range command has been deprecated and may be removed in future releases.
Use the set_range or set_range_minmax command instead.

Arguments
Potential 1 var / literal Bound 1 of the expected voltage range for this measurement.
(float)
Potential 2 var / literal Bound 2 of the expected voltage range for this measurement.
(float)
Page | 113

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Ensure that the next measurement can apply potentials between OV and 1.2 V.

set_pot_range 0 1200m

o It is recommended to use set_range_minmax da @ 1200m instead.

14.13.2. set_cr (deprecated)

MethodSCRIPT >1.1
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Set the current range for the given maximum current. The device will select the lowest current range that can

measure this current without overloading. Note that the current range has an impact on the potentiostat’s
bandwidth, please consult the instrument’s datasheet for more information.

¢ The set_cr command has been deprecated and may be removed in future releases. Use the
set_range or set_range_minmax command instead.
0 This command is ignored when autoranging is enabled for meas_loop_eis .
Arguments
ame e oo
Max current var / literal The maximum expected absolute current.
(float)
Example

Set current range to be able to measure a current of 500 nA.

set_cr 500n

o It is recommended to use set_range ba 500n instead.

14.13.3. set_range

MethodSCRIPT =>1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Set the expected maximum absolute current or potential for a given VarType. This value will be interpreted as a

P 114
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

range between -"Max value" and "Max value". The device will automatically configure itself to best handle values
within this range. Unsupported VarTypes are ignored without throwing an error.

The following variable types are currently supported:

®* Measured current (ba): selects the lowest current range that can measure the +/- "Max value" current
without causing an overload. This ensures the WE current can be measured at the best available resolution
and accuracy. Note that the current range has an impact on the potentiostat’s bandwidth, please consult
the instrument’s datasheet for more information. This command is ignored in galvanostatic mode.

® Measured potential (ab): selects the lowest potential range that can measure the +/- "Max value" potential
without causing an overload. This ensures the WE/SE vs RE potential can be measured at the best available
resolution and accuracy.

® Applied current (db): selects the lowest current range that can apply the +/- "Max value" current without
causing an overload. This ensures the WE current can be applied at the best available resolution and
accuracy. This command is ignored in non-galvanostatic modes.

® Applied potential (da): using set_range is not recommended for "Applied potential (da)". For the EmStat Pico
and Sensit Wearable, consider using set_range_minmax instead.

The following table shows which variable types are supported on which devices:

Variable type |EmStat Pico Sensit Emstat4 Nexus
Wearable
ba Yes Yes Yes Yes

ab No No Yes Yes
db No No Yes Yes
da Not Not No No

recommended recommended

e This command is ignored when autoranging is enabled for meas_loop_eis, meas_loop_acv
and meas_ms_eis.
0 Calling set_range with "Max value" is equivalent to calling set_range_minmax with -"Max
value" and "Max value".
Arguments
T
Variable type VarType The type identifier for this value (see description above).
Max value var / literal The maximum expected absolute current or potential.
(float)

Example

Set current range (ba) to be able to measure scurrent between -500 and 500 nA.

P 115
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

set_range ba 500n

14.13.4. set_range_minmax

MethodSCRIPT >1.3

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Set the expected minimum and maximum current or potential for a given VarType. The device will automatically
configure itself to best handle values within the range between the specified minimum and maximum value.
Unsupported VarTypes are ignored without throwing an error.

The following variable types are currently supported:

® Measured current (ba): selects the lowest current range that can measure both the "Min value" and "Max
value" current without causing an overload. This ensures the WE current can be measured at the best
available resolution and accuracy. Note that the current range has an impact on the potentiostat's
bandwidth, please consult the instrument’s datasheet for more information. This command is ignored in
galvanostatic mode.

® Measured potential (ab): selects the lowest potential range that can measure both the "Min value" and "Max
value" potential without causing an overload. This ensures the WE/SE vs RE potential can be measured at
the best available resolution and accuracy.

® Applied current (db): selects the lowest current range that can apply both the "Min value" and "Max value"
current without causing an overload. This ensures the WE current can be applied at the best available
resolution and accuracy. This command is ignored in non-galvanostatic modes.

® Applied potential (da): configures the device to be able to apply both the "Min value" and the "Max value"
potential. The EmStat Pico and Sensit Wearable require this command to reach its full applied potential, as it
has a limited "Dynamic potential window" that can moved around with this command. See Section B.1,
“PGStat mode properties” for more information.

The following table shows which variable types are supported on which devices:

Variable EmStat Sensit Emstat4
type Pico Wearable
ba Yes Yes Yes Yes

ab No No Yes Yes
db No No Yes Yes
da Yes Yes No No
o This command is ignored when autoranging is enabled for meas_loop_eis, meas_loop_acv
and meas_ms_eis.

P 116
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
R I
Variable Type VarType The type identifier for this value (see description above).
Min value var / literal The minimum expected current or potential.
(float)
Max value var / literal The maximum expected current or potential.
(float)
Example

Set current range (ba) to be able to measure a current of -500 to 500 nA.

set_range_minmax ba -500n 500n

14.13.5. set_autoranging

MethodSCRIPT =11

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Configure the autoranging for all meas_loop_* commands. Autoranging selects the most appropriate range for
the measured value in the last measurement loop iteration.

The range selected during autoranging is limited by the min and max arguments. If min and max are the same
value, autoranging is disabled.

e No autoranging is performed on calling this command.
e The set_range and set_range_minmax commands are not affected by the min and max
arguments of set_autoranging.

Arguments
T
Var type VarType The type of variable to measure, see Chapter 7, Variable types.
Min var / literal The minimum absolute value to use for autoranging. Can be used to
(float) exclude lower ranges. Must be positive.
Max var / literal The maximum absolute value to use for autoranging. Can be used to
(float) exclude higher ranges. Must be positive.

The VarType argument is new in MethodSCRIPT v1.3. To provide backward compatibility
0 with older scripts, the old syntax (with two arguments) is still supported as well. When the
first argument is ommitted, the VarType ba (VT_CURRENT) is used. So, set_autoranging 1u

P 117
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Tm (old command) is the same as set_autoranging ba 1u 1m (hew command). The old
syntax might be removed in the future.

Example 1

Enable autoranging for currents between 1 pA and 1 mA.

set_autoranging ba 1u Tm

Example 2

Enable autoranging for potentials between 10 mV and 1 V.

set_autoranging ab 10m 1000m

14.13.6. trim_enable
MethodSCRIPT >1.8

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Enable or disable trimming for a given VarType. Enabling trimming will allow the use of lower ranges, by
removing (trimming) a DC offset. However, it may lead to longer settling times.

By default, and after setting pgstat mode, trimming is disabled.
The following variable types are currently supported:

® Measured potential (ab)
® Measured second sense potential (ah and ai)

® Measured current (ba)
Unsupported variable types are ignored without throwing an error.

The following table shows which variable types are supported on which devices:

Variable type |EmStat Pico Sensit Emstat4 Nexus
Wearable
ab No No Yes Yes

ah No No No Yes
ai No No No Yes
ba No No Yes No
Arguments
Page | 118

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

Variable type VarType The type identifier for this value.
Enable var / literal 1 to enable, O to disable

(int)
Example

Enable trimming for measured potential:

trim_enable ab 1

14.14. PGStat

14.14.1. set_acquisition_frac

MethodSCRIPT >1.3
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Set the fraction of the iteration time to use for measurement. This only applies to measurement loops, and the

iteration time is determined by the measurement loop command arguments. When multiple signals are to be
measured, the acquisition time is shared between them. The fraction must be greater than 0 and smaller than 1.

The following figure shows the time that the Analog-to-Digital Conversion (ADC) is active, for two different
settings of the acquisition fraction:

setpoint setpoint setpoint setpoint
step step step step
acquis_tion fraction ADC ADC ADC ADC
=025
acquis_lion fraction ADC ADC ADC ADC
=040
h t_interval T t_inferval T t_interval T t_interval -

The actual applied fraction could be influenced by the set_acquisition_frac_autoadjust command. To
prevent this, disable the auto adjustment by setting the frequency to 0.

The set_pgstat_mode command initializes the fraction to the default value of 0.25 (= 25%). To change the
fraction, this command should therefore be used after set_pgstat_mode .

° A larger fraction means that less time is available for other commands in the measurement
loop to be executed, which could result in timing issues if the remaining time is too short.

P 119
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Make sure to check the "status" metadata (see Table 4, “Metadata types.”) to verify that the
loop timing was met.

Arguments
I
Fraction var / literal The fraction (a value between 0 and 1) of the iteration time to use for
(float) measurement.
Example

Set acquisition fraction to 25%.

set_acquisition_frac 250m

14.14.2. set_acquisition_frac_autoadjust

MethodSCRIPT =1.4

Supported instruments EmStat4, Nexus

Filter out the given frequency by automatically adjusting acquisition times. The acquisition time is the time in
which the signal is actually measured during an iteration. This works on the principle that by adjusting this time
to a multiple of the period of a frequency, this frequency is filtered out.

The set_pgstat_mode command sets the filtered frequency to a default value of 10 Hz, which will filter out both
50 and 60 Hz. It is recommended to set the frequency to the area’s power grid frequency, so that it can be
enabled at lower acquisition times. To turn off the auto adjustment, a frequency of O Hz can be set. The
adjustment will only be applied if the set frequency is lower than 1 / (acquisition time * 2). For CA and
OCP, it is applied if the frequency is at least equal to 1 / acquisition time.

The acquisition time is determined by:

® the set_acquisition_frac command (by default 25%),
e the interval of the measurement, and

e the number of variables to be measured.

This command does not apply to the meas, meas_loop_eis and meas_loop_geis commands.

Arguments
hame e oo
Frequency var / literal The acquisition auto adjust frequency.
(float)
Page | 120

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Set acquisition auto adjust frequency to filter out 50 Hertz.

set_acquisition_frac_autoadjust 50

14.14.3. set_ir_comp

MethodSCRIPT >1.5

Supported instruments EmStat4, Nexus

Set resistance to be compensated by iR compensation.

Compensate an ohmic drop (also known as iR drop) by increasing the WE potential based on the WE current.
This can be used to correct for an unwanted voltage drop between the WE and RE electrodes. It is only

necessary when the ohmic drop is significant when compared to the WE potential. iR compensation is only
possible if the resistance over which this voltage drop occurs is known and constant.

The EIS technique can be used to determine frequency independent impedances between

(r') RE and WE. This is a way of isolating the impedance that behaves like a pure resistor (at

w least over frequency), which implies it is eligible for iR compenstation. In most cells, this is the
lowest impedance point in the Nyquist plot where the imaginary impedance (£') is zero.

A Compensating for large iR drops can cause the system to become unstable.

INFO: iR compensation is not available in galvanostatic mode, or for high frequency measurements like EIS.

EmStat4

iR compensation is only supported on an EmStat4X that is licensed for iR compensation.

Arguments
I
Resistance var / literal The resistance to compensate for in ohms (Q)

(float)
Example

Compensate for the voltage drop over a resistance of 100 Q between RE and WE.

set_ir_comp 100

P 121
a9e| £ PalmSens

https://www.palmsens.com/knowledgebase-article/ohmic-drop

MethodSCRIPT manual

Last document update: 2025-10-15

14.14.4. set_pgstat_chan

MethodSCRIPT =>1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Select a PGStat channel. If the device has multiple channels, they can be selected with this command. Both
channels can be active at the same time, but the only way to measure both channels simultaneously is in
bipotentiostat (bipot) mode, using the add_meas optional argument. Refer to the instrument’s description
document to see how many channels each device has.

Arguments
S
Channel index uint8 The PGStat channel index to select.

A zero-based numbering is used, so the first channel has index O.
Example

Select the first PGStat channel (channel 0).

set_pgstat_chan 0

14.14.5. set_poly_we_mode (deprecated)

MethodSCRIPT =11

Supported instruments EmStat Pico, Sensit Wearable

Select the mode of the additional working electrode.

Arguments
I
Poly WE mode uint8 The mode of the additional working electrode:
0 = fixed mode (Additional WE is kept fixed at the specified potential)
1 = offset mode (Additional WE will follow the main WE at a specified
offset potential)
Example

Set the additional working electrode mode to offset mode.

set_poly_we_mode 1

P 122
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

o The set_poly_we_mode command has been deprecated and may be removed in future
releases. Use the set_bipot_mode command instead.

14.14.6. set_pgstat_mode

MethodSCRIPT =>1.1
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Set the PGStat hardware configuration to be used for measurements. Setting the PGStat mode initializes all

channel settings to the default values for that mode. Additionally if there is a bipot channel configured, it will be
cleared by this command.

Arguments
T
PGStat mode uint8 0 = Off

2 = Low Speed mode

3 = High Speed mode

4 = Max Range mode

5 = Poly WE (BiPot) mode (deprecated)

6 = Galvanostatic mode
Example

Set hardware configuration to high speed mode.

set_pgstat_mode 3

14.14.7. set_bipot_mode

MethodSCRIPT =1.7

Supported instruments EmStat Pico, Sensit Wearable, Nexus

Set the mode of the second working electrode. Can only be changed while cell is off. The second cell will be
switched on and off together with the main PGStat.

On the EmStat Pico this command sets the hardware configuration for the non-active
channel to Poly WE (BiPot) mode. Consequently, this also initializes all channel settings to

o the default values for that mode. This is similar to calling set_pgstat_mode on that channel
(with the now deprecated mode 5), which was the only way to configure the bipot channel
before MethodSCRIPT v1.7.

non-disabled mode should almost always be followed by set_bipot_potential to ensure

g Changing the bipot mode may not preserve the potential on the bipot. As such, setting a
the potential is as desired.

P 123
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments

N

BiPot mode uint8 0 = Disabled
1 = Fixed: additional WE is kept fixed at the specified potential (WE2 is
offset from RE)
2 = Offset: additional WE will follow the main WE at a specified offset
potential (WEZ2 is offset from S, or WE1 if S is not available)

Example

Set the BiPot in offset mode.

set_bipot_mode 2

14.14.8. set_bipot_potential
MethodSCRIPT >1.7

Supported instruments EmStat Pico, Sensit Wearable, Nexus

Set the potential (offset) of the second working electrode. The second electrode must have already been
enabled using set_bipot_mode.

Arguments
I T
Potential var / literal Potential (offset) of the second working electrode in Volt.
(float)
Example

Set the potential offset of the second working electrode to 0.1V.

set_bipot_mode 2
set_bipot_potential 100m

14.14.9. set_max_bandwidth

MethodSCRIPT >1.1
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Set maximum bandwidth of the signal being measured. Any signal of significant higher frequency than the set

bandwidth will be filtered out. There is no defined lower bound to the bandwidth. At the maximum bandwidth,
the signal is attenuated by up to 1% of the potential or current step. The actual bandwidth is dependent on

Page | 124
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

multiple factors, such as the current range, please consult the instrument’s datasheet for more information.

e If bipot mode is enabled (e.g. using the set_bipot_mode command), this command also
applies to the bipot channel.

Arguments

T I

Max bandwidth var/ literal The maximum expected bandwidth expected. Anything below this
(float) frequency will not be filtered out.

Optional arguments

The following optional arguments are supported:
* filter_type

Example

Set the max bandwidth to a frequency of 1 kHz.

set_max_bandwidth 1k

14.15. GPIO

14.15.1. set_gpio_cfg

MethodSCRIPT >1.2
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Set the GPIO pin configuration. Pins can be configured as one of multiple supported modes. To use a pin in a

specific mode, it must be configured for that mode. See Section B.6, “Device I/0O pin configurations” for available
pin configurations per device.

Arguments
Pin mask uint32 Bitmask specifying which pins are configured with this command.
Mode uint8 0 = Digital Input
1 = Digital Output
2 = Peripheral 1
3 = Peripheral 2 (reserved for future use)
Page | 125

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Set pins 0 and 1 to digital output mode. The prefix Ob means that the following value is expressed in a binary
format.

set_gpio_cfg @b11 1

14.15.2. set_gpio_pullup

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Enable or disable GPIO pin pull-ups.

Arguments
N R
Pin mask uint32 Bitmask specifying which pins are configured with this command. Only
input pins should be specified. Configuring the pull-up of an output pin
will result in an error.
Pull-up uint8 0 = Pull-up disabled
1 = Pull-up enabled
Example

Enable pull-up on pins 0 and 1. The prefix Ob means that the following value is expressed in a binary format.

set_gpio_pullup 0b11 1

14.15.3. set_gpio

MethodSCRIPT >1.1

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Set the GPIO output values. This sets the output value of all pins. The output value only has effect when the pin
is configured as digital output pin.

Arguments

Output values var / literal Bitmask that represents the state of the bits. Bit O is for GPIOO, bit 1 for
(int) GPIO1, etc. Bits that are set (1) correspond with a high output signal.

Page | 126

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Set the output value of pin 0 and 1 to high and all other pins to low.

set_gpio 0b11

14.15.4. get_gpio

MethodSCRIPT >1.2
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Get the GPIO input pin values. This reads the input value of all GPIO pins configured as input. Pins that are not

configured as input will always return a bit value of @. Bit operations could be used to filter out specific pin
values.

Arguments
T
Pin mask var [out] Bitmask that represents the state of the bits. Bit 0 is for GPIOO, bit 1 for
(int) GPIO1, etc. Bits that are high correspond with a high input signal.
The VarType of the variable will be set to VT_PIN_MSK (ec).
Example

Read the GPIO input values and store the values in variable g. Then check the output state of GPIOS.

var g
get_gpio g

if g & 0x20

send_string "GPIO5 is high"
else

send_string "GPI05 is low"
endif

14.15.5. set_gpio_msk

MethodSCRIPT =1.4

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Write to the GPIO pins indicated by the mask. Both value and mask are bit masks with on bit per pin.

Some pins may be protected on certain instruments or configurations. Writing to these pins
will result in an error.

P 127
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
I
Mask var / literal Mask indicating which pins to change, one bit per pin with 1 meaning
(int) enabled.
Values var / literal Values to write to masked pins, one bit per pin.
(int)
Example

Set the output value of pins 0 and 2to 1, and pins 1 and 3to 0.

set_gpio_msk 0b00001111 0b101

14.15.6. get_gpio_msk

MethodSCRIPT >1.4

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Get the GPIO input pin values with a mask. This reads the input value of all GPIO pins specified by the mask.
Any pins that are not configured as input or outside of the specified mask will return a bit value of @. This is
especially useful when multiple things are connected to the GPIO, but only a few pins are relevant. Both returned
value and mask have one bit per pin, where a bit with value 1 in the mask means enabled.

Arguments
T
Mask var / literal Mask indicating which pins to read, one bit per pin with 1 meaning

(inf) enabled.
Values var [out] Bitmask that represents the state of the bits specified by the first

(int) argument. Bits that are high correspond with a high input signal.

The VarType of the variable will be set to VT_PIN_MSK (ec).

Example

Read the input value of GPIO5 and store the value in variable g. Then check the output state of GPIOS5.

var g
get_gpio_msk 0x20 g

if g == 0x20

send_string "GPIO5 is high"
else

send_string "GPI0O5 is low"

P 128
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

endif

14.16. 12C

14.16.1. i2c_config

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Setup 12C configuration. This is required before using any other 12C command from MethodSCRIPT. The [2C
interface supported by MethodSCRIPT always works as master. Multi-master mode is currently not supported.

Arguments
T
Clock speed var / literal [2C clock speed in Hz. 100 kHz (standard mode) and 400 kHz (fast mode)
(int/float) are officially supported.

Address mode literal [2C addressing mode (only 7-bit mode is currently supported)
(int/float)

Example

Configure I2C for standard mode (100 kHz) with 7-bit address.

i2c_config 100k 7

On the EmStat Pico, make sure the 12C GPIO pins are configured for 12C. See Section
14.15.1, “set_gpio_cfqg” for more information on configuring GPIO.

14.16.2. i2c_write_byte

MethodSCRIPT >1.2
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Transmit one byte to an 12C target device. This also generates the [2C start and stop conditions. If a NACK (Not

Acknowledge) was received from the target device, the user should handle this and reset the ACK status
variable.

Arguments
T
Device address var/ literal The address of the target device.
(int)
Page | 129

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

Transmit data var / literal Data byte to transmit.
(int)

ACK status var [in/out] Result of the 12C operation.
(int) 0 = ACK received

1 = NACK received for address

2 = NACK received for data

3 = NACK received for address or data

The value of the variable must be O before executing this command.

command will assume that the previous operation caused a NACK that was not handled by

¢ The variable passed for the ACK status argument should be initialized to 0. Otherwise this
the script and will throw the error code 0x4011 .

Example

Write the value 3 to the device with address 0x48. Abort the script if the 12C operation failed.

var ack

store_var ack @i ja
i2c_write_byte 0x48 0x03 ack
if ack != 0i

abort

endif

14.16.3. i2c_read_byte

MethodSCRIPT >1.2
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Receive one byte from an |2C target device. This also generates the I12C start and stop conditions. If a NACK (Not

Acknowledge) was received from the target device, the user should handle this and reset the ACK status
variable.

Arguments
e
Device address var/ literal The (7-bit) address of the target device.
(int)
Receive data var Variable to store the received byte in.
(int)
Page | 130

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

ACK status var [in/out] Result of the [12C operation.
(int) 0 = ACK received
1 = NACK received for address
2 = NACK received for data
3 = NACK received for address or data
The value of the variable must be 0 before executing this command.

command will assume that the previous operation caused a NACK that was not handled by

é The variable passed for the ACK status argument should be initialized to 0. Otherwise this
the script and will throw the error code 0x4011 .

Example

Read one byte of data from device 0x48 and store it in variable data. Abort the script if the 12C operation failed.

var ack

var data

store_var ack 0i ja
i2c_read_byte 0x48i data ack
if ack !'= Qi

abort

endif

14.16.4. i2c_write

MethodSCRIPT >1.2
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Write one or more bytes to an [12C target device. This also generates the 12C start and stop conditions. If a NACK

(Not Acknowledge) was received from the target device, the user should handle this and reset the ACK status
variable.

Arguments

I I

Device address var/ literal The (7-bit) address of the target device.
(int)

Transmit data array Reference to an array that contains the data to transmit.
(int)

Transmit count var/ literal Number of bytes to transmit.
(int) Minimum value = 1, maximum value is 255 or size of the array.

Page | 131

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

ACK status var [in/out] Result of the [12C operation.
(int) 0 = ACK received
1 = NACK received for address
2 = NACK received for data
3 = NACK received for address or data
The value of the variable must be 0 before executing this command.

command will assume that the previous operation caused a NACK that was not handled by

é The variable passed for the ACK status argument should be initialized to 0. Otherwise this
the script and will throw the error code 0x4011 .

Example

Write the values 12 and 34 to the 12C target device with address 0x48.

var ack

store_var ack 0i ja

array w_array 2

store_var w_array[0i] 121 aa
store_var w_array[1i] 341 aa
i2c_write 0x48 w_array 2 ack

14.16.5. i2c_read

MethodSCRIPT >1.2
Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Read one or more bytes from an 12C target device. This also generates the [2C start and stop conditions. If a

NACK (Not Acknowledge) was received from the target device, the user should handle this and reset the ACK
Status variable.

Arguments
T
Device address var/ literal The (7-bit) address of the target device.
(int)
Received data array Reference to an array to store received data in.
(int)
Receive count var / literal Number of bytes to receive.
(int) Minimum value = 1, maximum value is 255 or size of the array.
Page | 132

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

ACK status var [in/out] Result of the [12C operation.
(int) 0 = ACK received
1 = NACK received for address
2 = NACK received for data
3 = NACK received for address or data
The value of the variable must be 0 before executing this command.

command will assume that the previous operation caused a NACK that was not handled by

é The variable passed for the ACK status argument should be initialized to 0. Otherwise this
the script and will throw the error code 0x4011 .

Example

Read 4 bytes from the I2C target device with address 0x48 and store them in array r_array .

var ack

store_var ack 0i ja

array r_array 4

i2c_read 0x48 r_array 4 ack

14.16.6. i2c_write_read

MethodSCRIPT =1.2

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Write to and read from an 1°C target device. This also generates the I2C start and stop conditions. In contrast
with i2c_read and i2c_write, this command does not generate a STOP condition between writing and reading.
If a NACK (Not Acknowledge) was received from the target device, the user should handle this and reset the
ACK status variable.

Arguments
T
Device address var/ literal The (7-bit) address of the target device.
(int)
Transmit data array Reference to an array that contains the data to transmit.
(int)
Transmit count var/ literal Number of bytes to transmit.
(int) Minimum value = 1, maximum value is 255 or size of the array.
Received data array Reference to an array to store the received data in.
(int)
Receive count var / literal Number of bytes to receive.
(int) Minimum value = 1, maximum value is 255 or size of the array.
Page | 133

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I

ACK status var [in/out] Result of the [12C operation.
(int) 0 = ACK received
1 = NACK received for address
2 = NACK received for data
3 = NACK received for address or data
The value of the variable must be 0 before executing this command.

command will assume that the previous operation caused a NACK that was not handled by

é The variable passed for the ACK status argument should be initialized to 0. Otherwise this
the script and will throw the error code 0x4011 .

Example

Write 2 bytes to the 12C target device with address 0x48, and then immediately read 4 bytes.

var a
array w 2

array r 4

store_var a 01 ja

store_var w[0@i] 12i aa
store_var w[1i] 34i aa
i2c_write_read 0x48i w 2 r 4 a

14.17. Multiplexers

14.17.1. mux_config

MethodSCRIPT >1.4

Supported instruments EmStat Pico, EmStat4, Nexus

Configure a multiplexer to use in MethodSCRIPT. This tells the instrument which multiplexer (mux) is connected
and which settings to set. Configuring the multiplexer will configure GPIO pins designated for that particular
multiplexer. When the multiplexer type is set to none, the designated GPIO pins for the previously selected mux
are switched back to input.

Arguments
Mux type var / literal The multiplexer type, see Table 11, “Mux type values”
(int)
Config (Uint32) MUX configuration as bit mask, see Table 12, “Mux configuration fields”

Table 11. Mux type values

Page | 134
a9e| £ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

0 None

1 Original MUX8

2 Original MUX16

3 MUX8-R2

4 Multiplexer for EmStat Pico, 16 channel

5 Multiplexer for EmStat Pico, 256 channel matrix

Configuration options are defined to be standard across all multiplexers. However, not all options can be set
(automatically) on all multiplexer. Please resort to the manual of the particular multiplexer to find out which
options are available.

Table 12. Mux configuration fields

0x0002 Switch box 1

0x0004 Switch box 2

0x0008 OCP mode enable

0x0010 Common RE and CE

0x0020 Connect RE to CE

0x0040 Connect SE to WE

0x0180 WE mode (0x0000 = float, 0x0100 = GND, 0x0180 = standby voltage)
Example

The following example demonstrates configuring the MUX8-R2 to be enabled with RE connected to CE, and WE
to GND.

mux_config 31 0x0120

14.17.2. mux_get_channel_count

MethodSCRIPT =14
Supported instruments EmStat Pico, EmStat4, Nexus
Get the number of channels on the multiplexer setup. Different multiplexers can have a different number of

channels and this command should help making scripts more universal. The returned number of channels is the
number provided by the multiplexer rather than the number of channels actually connected to a solution.

In case of the MUX8-R2, this command will give the total number of channels available in the chain. So for three

MUX8-R2s in daisy-chain configuration, it will return 24 channels.

P 135
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
T
Number of var [out] Variable to store the total available number of channels

channels (int) The VarType of this variable will be set to VT_UNKNOWN (aa).

Example

Store the number of available mux channels in variable n .

var n
mux_get_channel_count n

14.17.3. mux_set_channel

MethodSCRIPT =1.4

Supported instruments EmStat Pico, EmStat4, Nexus

Select channel on the multiplexer. The multiplexer has to be configured with mux_config before selecting.

Arguments
T T
Channel var / literal The channel to select (starting from 1)
(int)
Example

Select channel 3 on the MUX.

mux_set_channel 3i

14.18. Misc

14.18.1. notify_led

MethodSCRIPT =1.5

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Notify the user of a user-defined event, using the LED. This is intended as a generic way to notify the user of test
results, errors, the progress of the measurement, or other events. Because different devices have different LED
(color) availability, the device will choose the best way to signal each event type. Notifications are persistent
between script runs.

P 136
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments

N

Notify mode uint16 Notify type. See tables below for device specific behavior.
0 = Clear notifications
1 =Idle
2 = Busy
3 = Attention
4 = Test pass
5 = Test falil
6 = Warning
7 = Error

EmStat4

The EmStat4 will use the multicolor LED for all status notifications. Default LED behavior is overridden by
notifications.

Notify Behavior description
type

0 Clear notifications Default LED behavior
1 Idle Solid blue LED

2 Busy Solid red LED

3 Attention Solid white LED

4 Test pass Solid green LED

5 Test fail Solid red LED

6 Warning Solid yellow LED

7 Error Solid yellow LED
EmStat Pico

The EmStat Pico will use the blue and red LED for all status notifications. Default LED behavior is overridden by
notifications.

Notify Behavior description
type

0 Clear notifications Default LED behavior

1 Idle Red LED off, solid blue LED
2 Busy Solid red LED, solid blue LED
3 Attention Solid red LED, blue LED off
4 Test pass Red LED off, solid blue LED
5 Test fail Solid red LED, blue LED off
Page | 137

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

Notify Behavior description
type

6 Warning Solid red LED, blue LED off

7 Error Solid red LED, blue LED off

Sensit Wearable

The Sensit Wearable will use the blue LED for all status notifications. Default LED behavior is overridden by
notifications.

[\ 0111} Behavior description
type

0 Clear notifications Default LED behavior

1 Idle Blinking blue LED (0.5 Hz)

2 Busy Solid blue LED

3 Attention Pulse blue LED (100 ms on, 400 ms off)
4 Test pass Pulse blue LED (900 ms on, 100 ms off)
B Test fall Blinking blue LED (4 Hz)

6 Warning Blinking blue LED (4 Hz)

7 Error Blinking blue LED (4 Hz)

Example

Notify the user that a measurement is ongoing. On the EmStat4 and EmStat Pico this turns on the red LED.

notify_led 2

14.18.2. smooth

MethodSCRIPT =1.6

Supported instruments Sensit Wearable, EmStat4, Nexus
Apply Savitzky-Golay smoothing to data in an array.

Apart from their float value, variables in the output array will be identical to those in the input array (noise,
vartype, etc).

If the output array is longer than the input, excess variables will be left unchanged.

The length of the data arrays must be sufficiently long to apply the requested smoothing strength. If the data is
too short, error code 0x420F will be returned. In this case, either a lower strength or larger array must be used.

P 138
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
e e Deoen |
Input array Array Input data
(float)
Output array Array [out] Output data. Must be at least as long as the input. It may be the same
(float) array as the input, in which case the original data will be overwritten.
Smoothness var / literal Smoothing strength
(int) 0 =Low
1 = Medium
2 = High
3 = Very High
Example

Smooth the invals array and store the outcome in the outvals array

smooth invals outvals 2i

14.18.3. peak_detect

MethodSCRIPT >1.6

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus

Find peaks in the given data.

Multiple peaks may be detected, and their info is stored in the Output indices and Output heights arrays. The
peaks in these arrays are sorted in descending order of peak height. If there is not enough room to store all the
peaks detected in the output arrays, the rest will be ignored.

Arguments
T
Input array Array Input data
(float)
Output indices Array [out] The indices of the peaks, sorted in descending order of height. If fewer
(int) peaks were present in the data than can be stored in the array, excess
values will be -1.
Output heights Array [out] The heights of the peaks, sorted in descending order of height. If fewer
(float) peaks were present in the data than can be stored in the array, excess
values will be 0. Heights are always absolute positive values, even if the
detected peaks are negative.
Page | 139

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

I I

Direction var / literal Direction of peaks to detect
(int) 0 = Positive going
1 = Negative going
Threshold var / literal Threshold of peak heights to detect. Lower peaks are ignored.
(float)

Optional arguments

The following optional arguments are supported:
® window

Example

Detect the two highest positive peaks in an input array, larger than 10e-6.

array indices 2
array heights 2
peak_detect data indices heights @i 10u

14.18.4. beep

MethodSCRIPT =1.7

Supported instruments Nexus

Make a beep, and wait for it to be finished. If the device is muted then no tone will play, but the command will
still wait.

Arguments
T
Tone uint8 The note to play - Higher values are higher pitched.

The exact note played is counted in semitones above C3.

e.g. 12is C4 (~262Hz), 2 is D3 (~147Hz)
Volume uint8 From O to 100.

If the device does not support volume control, this is ignored.
Duration var /literal Seconds to play the tone for.

(float)

Example

Play C4 at half volume for a second

Page | 140
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

beep 12 50 1000

14.18.5. battery_perc

MethodSCRIPT >1.7

Supported instruments Sensit Wearable

Read the battery’s charge as a percentage.

° If the battery’s state of charge cannot be measured, battery_perc will return -1. For
example this happens on the Sensit Wearable during charging.

Arguments

are e oeseien

Measured var [out] Variable to store value into.

Percentage (float)

Example

Read the current battery charge, and report it.

var p

battery_perc p

ifp<®o

send_string "I'm a Sensit Wearable and the battery is charging!"
else

send_string f"Battery at {p}%"

endif

14.18.6. get_progress

MethodSCRIPT =1.7

Supported instruments EmStat Pico, Sensit Wearable, EmStat4, Nexus
Read the progress through the current measurement, from O to 100.

o [t is an error to use this outside a measurement loop

P 141
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
T
Measured var [out] Variable to store value into.
Percentage (int)
Example

Write out progress through a measurement as it iterates

var prog

var ocp

meas_loop_ocp ocp 100m 10
get_progress prog
send_string f"{prog}%"
endloop

14.18.7. linear_fit

MethodSCRIPT >1.8

Supported instruments Sensit Wearable, EmStat4, Nexus

Perform a linear least squares regression on a set of data.

Arguments

T

X datapoints Array Array containing X datapoints as floats
(float)

Y datapoints Array Array containing Y datapoints as floats
(float)

Slope var [out] Slope of the best fit line
(float)

Intercept var [out] Y-intercept of the best fit line
(float)

Example

Perform an LSV, and then perform a best fit on the data. For a resistive load, the slope of this data equals the
resistance.

e
array ps 101i
array cs 107i

Page | 142
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

var p
var ¢
var ix
store_var ix 01 ja
set_pgstat_mode 2
cell_on
set_autoranging ba 1a 1
meas_loop_lsv p ¢ 0 1 10m 1
copy_var p ps[ix]
copy_var ¢ cs[ix]
add_var ix Ti
endloop
var slope
var offset
linear_fit cs ps slope offset
pck_start
pck_add slope
pck_add offset
pck_end

14.18.8. mean

MethodSCRIPT =1.8

Supported instruments Sensit Wearable, EmStat4, Nexus

Take the mean of an array of data.

The returned mean will have the same VarType as the first element of the input data

Arguments
T
Data Array Array containing datapoints as floats
(float)
Mean var [out] Mean of the data in the input array
(float)
Example

Perform an OCP measurement and report the mean of the last 100 data points

e

array data 200i
var p

var ix

store_var ix @i ja

Page | 143
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

meas_loop_ocp p 10m 2
copy_var p data[ix]
add_var ix Ti
endloop
subarray last100 data 1001 100i
var avg
mean last100 avg
send_string f"{avg}"

14.18.9. gr_scan

MethodSCRIPT >1.8

Supported instruments EmStat4T

Trigger the QR code scanner.

The scanner recognises QR codes in the following format:

[Arbitrary Datal#!PS[(integer)|(float),]

After the text #!PS, all remaining text must be a comma separated list of integer or float values. For example the
QR text:

Leading text #!PS3,10,2.0,10e-1,50

would produce the values:
3 (int), 10 (int), 2.0 (float), 1.0 (float), 50 (int).
Output count is set according to the following rules:

¢ -3 if no code was scanned.

® -2 if a code was scanned and contained a #!PS marker but with invalid formatting.
® -1 if a code was scanned but contained no #!PS marker.

® The number of values parsed following the #!PS marker.

e This can be zero for a code that ends immediately.

e This can be greater than the size of the output array. In this case the output array will contain as many
values as it can hold, and the output count will be set to the number of values that were parsed.

Arguments
I I
Output Array Array [out] Array to store scanned values into
(float)
Output count var The number of variables scanned, or -1 in the case of an error
(int)
Page | 144

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Optional arguments

The following optional arguments are supported:

® qr_log

Example

Scan a QR code, print the number of values scanned and then print them out.

array outputs 5i
var out_count
qr_scan outputs out_count
var ix
store_var ix 01 aa
send_string f"Parsed {out_count} values"
if out_count < @i
This is some kind of error. For this example we will just end the script.
abort
end if
loop ix < out_count
if ix >= bi
There were more values in the QR code than we could store. So
only print the first 5.
break
end if
send_string f"{ix}: {outputs[ix]}"
add_var ix 1i
endloop

14.19. Display

14.19.1. display_draw

MethodSCRIPT >1.8

Supported instruments EmStat4T

Immediately prompt the display to be updated.

The display will be occassionally updated regardless - however it is advised that the user includes display_draw
when they have added all the elements they wish to be shown, in order to make the interface as responsive as

possible.

If this command is not used, the user may feel a noticeable lag before items appear on the display.
Arguments

Page | 145
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

14.19.2. display_clear
MethodSCRIPT >1.8
Supported instruments EmStat4T

Remove all elements from the display.

This won’t be reflected on-screen until it is next drawn, see Section 14.19.1, “display_draw”.

Arguments

14.19.3. display_text

MethodSCRIPT >1.8

Supported instruments EmStat4T

Add a new line of text to the display, to be shown the next time the display is drawn (see Section 14.19.1,
“display_draw”).

If the text is too long, it will be truncated. If there is not room on the screen, this will have no effect.

This text will appear alongside elements added by the Section 14.19.4, “display_icon”, Section 14.19.6,
“display_btns” and Section 14.19.5, “display_progress” commands.

Arguments
T
Text string The line to display
Size var / literal 0 = Small

(int / float) 1 =Large
Example

Add the lines "Hello" and "World" to the display.

display_text "Hello" 0
display_text "World" @
display_draw

14.19.4. display_icon

MethodSCRIPT >1.8

Supported instruments EmStat4T

Page | 146
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Add an icon on the display, to be shown the next time the display is drawn (see Section 14.19.1,
“display_draw”).

This icon will appear alongside elements added by the Section 14.19.3, “display_text”, Section 14.19.6,
“display_btns” and Section 14.19.5, “display_progress” commands.

Arguments

N

Icon type var / literal 1 = Okay

(int / float) 2 =Warn
3 = Query
4 = Error
5 =Info
6 = QR Code
7 = Spinner
8 = Add droplet
9 = Insert SPE
10 = User Icon 1
11 = User Icon 2
12 = User Icon 3
13 = User Icon 4
14 = User Icon 5

Example
Display a warning to the user
display_icon 1i

display_text "This is a warning!"
display_draw

14.19.5. display_progress
MethodSCRIPT >1.8

Supported instruments EmStat4T

Add a progress bar on the display, to be shown the next time the display is drawn (see Section 14.19.1,
“display_draw”).

This icon will appear alongside elements added by the Section 14.19.3, “display_text”, Section 14.19.4,
“display_icon” and Section 14.19.6, “display_btns” commands.

Page | 147
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Arguments
T
Progress value var/ literal The progress to show between 0 and 100. Any value beyond these limits
(int / float) will hide the progress bar.
Example

Display a progress bar filling from O to 100 to the user, then hide it.

var x
store_var x 0 ja
loop x < 100
display_progress x
display_draw
add_var x 1i
endloop
Hide the progress bar
display_progress -1
display_draw

14.19.6. display_btns

MethodSCRIPT >1.8

Supported instruments EmStat4T

Show one or two buttons on the display, then immediately update the display and wait for the user to press one.

These buttons will be shown at the bottom of the display, below any elements added by the Section 14.19.3,
“display_text”, Section 14.19.4, “display_icon” and Section 14.19.5, “display_progress” commands.

Note that since this command waits for the user to press a button, you must add other elements (text, icons,
progress) before this command.

After a button is pressed, the screen will be cleared.

Arguments
N N
Pressed button var [out] Indicates the pressed button. If the left button is pressed or there is only
ID one button, this will be 01 .
If the right button is pressed, it will be 11 .
Left Text string The text to be shown on the left button
Right Text string The text to be shown on the right button. If this is the empty string "",
only the left button will be shown.
Page | 148

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Show the user two buttons, and tell them which one they pressed.

var v
display_text "Pick a button!"
display_btns v "Left" "Right"

if v == 0i

send_string "You pressed left!"
elseif v == 1i

send_string "You pressed right!"
endif

14.19.7. display_inp_num

MethodSCRIPT >1.8

Supported instruments EmStat4T

Prompt the user for a numerical value, and wait until one is provided.

Everything else on the screen will be removed to show the keypad. When this command completes, the display
will be cleared.

Arguments
e
Prompt string The prompt to show while waiting for input
Value var [out] The int/float value inputted by the user
Int or Float literal 0 = Input an integer

(int) 1 = Input a float
Example

Ask the user for a value, and then display it back to them.

var v
display_inp_num "Please enter a number" v @
display_text f"You entered {v}"
display_draw

14.19.8. display_scroll_add

MethodSCRIPT =>1.8

Page | 149
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Supported instruments EmStat4T

Add an entry to the scroll list on the display, to be shown using Section 14.19.9, “display_scroll_get”.
Up to ten scroll entries may be added, after which adding more will have no effect.

This command will have no immediate effect on the display, until Section 14.19.9, “display_scroll_get” is used.

Arguments
T
Text string The line to show to the user

Example

Give the user 4 items to choose between

var choice

display_scroll_add "Entry A"

display_scroll_add "Entry B"

display_scroll_add "Entry C"

display_scroll_add "Entry D"

display_scroll_get "Make a choice" choice

If the user picks "Entry C", then ‘choice" will equal ‘2°.

14.19.9. display_scroll_get
MethodSCRIPT >1.8

Supported instruments EmStat4T

Show the scroll items (added by Section 14.19.8, “display_scroll_add”) to the user, and wait for a choice to be
made.

At least one entry must have been added since the last time this command was called.

Everything else on the screen will be removed to show the scroll selection. When this command completes, the
display will be cleared.

Arguments
R
Prompt string The prompt to show while the user chooses
Chosen var [out] The index of the value chosen by the user (starting at 0)
(int)
Page | 150

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example

Give the user 4 items to choose between

var choice

display_scroll_add "Entry A"

display_scroll_add "Entry B"

display_scroll_add "Entry C"

display_scroll_add "Entry D"

display_scroll_get "Make a choice" choice

If the user picks "Entry C", then ‘choice" will equal ‘2°.

14.19.10. display_keyboard

MethodSCRIPT >1.8

Supported instruments EmStat4T

Get a line of text entered by the user and record it to the script output.

Everything else on the screen will be removed to show the keyboard. When this command completes, the
display will be cleared.

Arguments
S
Text string The prompt to show the user

Example

Ask the user to record their name in the log

display_keyboard "Enter user name:"

P 151
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 15. MethodSCRIPT examples

These examples can be used on any device that supports MethodSCRIPT, but they contain some commands
that are device-specific for the EmStat Pico. These commands will be ignored on devices that do not use them.

15.1. EIS example

The following example script runs an EIS scan from 200 kHz down to 200 Hz over 11 points. After each point a
data packet will be sent containing the: frequency, Z-real, Z-imaginary variables. The amplitude of the sine is set
to 10 mV and no DC potential is applied.

var freq
var z_real
var z_imag
Select channel 0.
set_pgstat_chan 0
High speed mode is required for EIS.
set_pgstat_mode 3
Autorange starting at 1 mA down to 10 uA.
set_autoranging ba 10u 1m
Cell must be on to do measurements.
cell_on
Run actual EIS measurement.
meas_loop_eis freq z_real z_imag 10m 200k 200 11 0
Send measurement package containing frequency, Z-real and Z-imaginary.
pck_start
pck_add freq
pck_add z_real
pck_add z_imag
pck_end
endloop
Turn cell off when finished or aborted.
on_finished:
cell_off

Example output

MeeeD
Pdc8030D40 ;ccAAE483Fm,14,288;cd7FD3127 ,14,288

start of measurement loop

data package

more data packages

data package

end of measurement loop

newline indicating end of script

Pdc8030D3Fm; cc80EDAG4 ,14,287;cd9751491m, 14,287

*

@© P P P L P

15.2. LSV example

The following example script runs an LSV from -0.5 V to 1.5 V in approximately 200 steps of 10 mV. The scan

P 152
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

rate is set to 100 mV/s. After each step, a data packet will be sent containing the set WE potential and the
measured WE current. The measured WE current will be used to autorange.

var current
var potential
Select channel 0.
set_pgstat_chan 0
Low speed mode is fast enough.
set_pgstat_mode 2
Select bandwidth of 4@ for 10 points per second.
set_max_bandwidth 40
Set up potential window between -0.5 V and 1.5 V, otherwise
the max potential would be 1.1 V for low speed mode.
set_range_minmax da -500m 1500m
Set current range to 1 mA.
set_range ba Tm
Enable autoranging, between current of 100 uA and 5 mA.
set_autoranging ba 100u 5m
Turn cell on for measurements.
cell_on
Equilibrate at -0.5 V for 5 seconds, using a CA measurement.
If you want autoranging before the measurement, but no datapoints,
remove the pck_ commands from the loop.
meas_loop_ca potential current -500m 500m 5
pck_start
pck_add potential
pck_add current
pck_end
endloop
Start LSV measurement from -0.5 V to 1.5V, with steps of 10 mV
and a scan rate of 100 mV/s.
meas_loop_lsv potential current -500m 1500m 10m 100m
Send package containing set potential and measured WE current.
pck_start
pck_add potential
pck_add current
pck_end
endloop
Turn off cell when done or aborted.
on_finished:
cell_off

Example output

Moo07 < start of measurement loop (CA)
Pda7F85E36u;ba7F77484p,14,20B « data package

e < more data packages
Pda7F85E36u;ba7F77484p,14,20B « data package

P 153
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

*

Moo
Pda816E55Fu;ba816DB89p, 14,207

end of measurement loop (CA)
start of measurement loop (LSV)
data package

more data packages

data package

end of measurement loop (LSV)
newline indicating end of script

Pda816E55Fu;ba816DB89p, 14,207

*

N N N N MU N

15.3. SWV example

The following example script runs a SWV from -0.5 V to 0.5 V with steps of 10 mV in 101 steps. After each step,
a data packet will be sent containing the WE potential for that step and current resulting from the SWV
measurement.

var current
var potential
var forward
var reverse
set_pgstat_chan 0
set_pgstat_mode 2
Set maximum required bandwidth based on frequency * 4.
However, since SWV measures 2 datapoints, we have to multiply the
bandwidth by 2 as well.
set_max_bandwidth 80
Set potential window.
The max expected potential for SWV is EEnd + EAmp * 2 - EStep.
This measurement would also work without this command since it
stays within the default potential window of -1.1 V to 1.1 V.
set_range_minmax da -500m 690m
Set current range for a maximum expected current of 2 uA.
set_range ba 2u
Disable autoranging.
set_autoranging ba 2u 2u
Turn cell on for measurement.
cell_on
Perform SWV.
meas_loop_swv potential current forward reverse -500m 500m 10m 100m 10
Send package with set potential, forward current - reverse current,
forward current, and reverse current.
pck_start
pck_add potential
pck_add current
pck_add forward
pck_add reverse
pck_end
endloop
Turn off cell when done or aborted.
on_finished:

Page | 154
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

cell_off

Example output

10002
Pda7F85E36u;ba8630DDCp,10,202;ba7FB6915p,10,202;ba7F85B39p, 10,202

Pda807A1CAu;ba8030EB6pP,10,202;ba80ABO12p,10,202;ba807A15Cp, 10,202

*

15.4. Fast CV example

The following example performs a fast CV with 3 scans with 2 averaging passes each. The meas_fast_cv
command stores the set potential and measured current in arrays which are sent using a loop. This example is
intended to run on a 1 kQ resistor so the current range is set accordingly.

The output can be split into separate scans quite easily because each scan has the same number of points. The
number of points per scan is equal to the total number of points divided by the number of scans. In this case,
we have 15 points and 3 scans resulting in gives 5 points per scan. The variable ¢ holds the total number of
points, so splitting could be done in MethodSCRIPT. The second loop in the example does just that.

Variable for number of points measured

var total_points

var scan_points

Variable used as loop iterator for total points processed

var i

Variable used as loop iterator for points within a scan

var j

Array to store set potentials

array potentials 15

Array to store measured currents

array currents 15

Configure instrument to perform this measurement on 1 kohm

set_pgstat_chan 0

set_pgstat_mode 2

set_max_bandwidth 1M

set_range_minmax da -110m 110m

set_range_minmax ba -110u 110u

Set the potentiostat at e_begin and let it settle a bit before applying it on the cell
set e @

wait 50m

cell_on

Perform the actual measurement. Note that this does not have a measurement loop
meas_fast_cv potentials currents total_points @ -100m 100m 100m 10 nscans(3) nscans_avg(2)
Points per scan (scan_points) is points total (total_points) / nscans (3)
copy_var total_points scan_points

div_var scan_points 3i

store_var i 0i ja

P 155
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Loop through scans
loop i < total_points
store_var j @i ja
send_string "scan separator"
Loop through points in scan
loop j < scan_points
pck_start meta_msk(0x00)
Add index to packet
pck_add i
Add set potential to packet
pck_add potentials[i]
Add measured current to packet
pck_add currents[i]
pck_end
Increase indexes
add_var i 1i
add_var j 1i
endloop
endloop
cell_off

Example output

L

Tscan separator

L

PjaB80000001;da8000000 ;ba8022674p
Pja80000011;da20A34E8n; ba20CCAA8p
Pja80000021;da8000000 ;ba8024B26p
Pja80000031;daDF5CB18n;ba8@1875Fn
PjaB80000041;da8000000 ;ba8024B26p
+

Tscan separator

L

Pja80000051;da8000000 ;ba8024B26p
PjaB80000061 ; da20A34E8n; ba2@CEF58p
PjaB80000071;da8000000 ;baB8022674p
PjaB80000081i;daDF5CB18n;ba8@1875Fn
PjaB80000091;da8000000 ;baB8024B26p
+

Tscan separator

L

PjaB800000Ai;da8000000 ;ba8024B26p
PjaB8000008B1i;da20A34E8n; ba2@CEF58p
PjaB800000Ci;da8000000 ;baB8024B26p
Pja800000D1 ; daDF5CB18n;ba801875Fn
Pja800000Ei;da8000000 ;ba8024B26p
+

P 156
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Our output has the following format: index;potential;current Scans are separated by the text "scan
separator". MethodSCRIPT also prints an L at the start of each loop and and + at the end of them.

15.5. Fast CA example

The following example performs a Fast CA measurement of 1 ms with an interval time of 1 us. A potential step
from 100 mV to 200 mV is performed before starting the measurement.

Timestamps are calculated in MethodSCRIPT and added to the data packages, so PSTrace can automatically
plot the current versus time. Note that the timestamps are calculated using multiplication, not addition.
Mathematically it would be the same to add 1 us to the timestamp every iteration. However, due to
accumulation of rounding errors, such an approach could lead to very inaccurate timestamps, and as a
consequenc, a potentially misleading plot. Because the index variable is an integer, it can be incremented
without any rounding issues. The int_to_float command is then necessary to convert a variable from integer
to floating-point format before it can be multiplied with another floating-point number. Finally, the VarType will be
setto eb (VT_TIME) so the host software (e.g. PSTrace) can identify that the variable contains a time.

array currents 1000
var current
var potential
var num_points
var index
var time
set_pgstat_mode 2
set_range ba 200u # set current range to +/- 200 uA
set_max_bandwidth 16 # set bandwidth to 1 GHz
set_e 100m
cell_on
wait 100m
meas_fast_ca potential currents num_points 200m Tu 1m
cell_off
store_var index @i ja
loop index < num_points
copy_var index time
int_to_float time
alter_vartype time eb
mul_var time 1u
pck_start
pck_add time
pck_add currents[index]
pck_end
add_var index 1i
endloop

P 157
a0e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Example output

L
Peb8000000 ;baDF23478p,10,212
Peb80F423Fp; baDF 2EBF8p, 10,212
Peb81E847Fp; bakE064608p, 10,212

Peb80F3688n;ba8030D34n,10,212
Peb80F3A70n;ba8030D7Fn, 10,212
Peb80F3E58n;ba8030DA4n, 10,212
+

15.6. SCP example

The following example performs an SCP measurement using a 1mA stripping current, an end potential of 0.5V,
and a maximum measurement time of 10s. The current range for set and measured current are set to the same
value, to speed up the switch to galvanostatic mode. It is preceded by a deposition stage, where a potential of
2V has been applied for 3s. After the measurement, the cell is switched off, to avoid the cell going too far
passed the end potential. Lastly, the potential is sent for every bin with non-zero dt / dE, so the host software
(e.g. PSTrace) can plot the potential on the x-axis, and dt / dE on the y-axis.

array bins 4096

var bin_count

var bins_start_pot

var bins_end_pot

var current

var potential

set_pgstat_mode 3

set_max_bandwidth 500k

set_range ab 1 # Set VT_POTENTIAL range.

set_range db Tm # Set VT_CELL_SET_CURRENT range.

set_range ba Tm # Set VT_CURRENT range the same as VT_CELL_SET_CURRENT.
#

Deposition stage

set e 2

cell_on

wait 3

#

The SCP measurement

meas_scp bins bin_count bins_start_pot bins_end_pot current 1m 500m 10
cell_off # Quickly turn off the cell, otherwise we keep applying current.
#

Find the first and last non zero value in the bins.

var index

var index_start

var index_end

store_var index_start @i ja

store_var index_end @i ja

P 158
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

store_var index @i ja
loop index < bin_count
if bins[index] > 0
copy_var index index_start
breakloop
endif
add_var index Ti
endloop
copy_var bin_count index
sub_var index 1i
loop index >= 0@
if bins[index] > @
copy_var index index_end
add_var index_end 1i

breakloop
endif
sub_var index 1i
endloop
#

Precompute the bin width: (bins_end_pot - bins_start_pot) / bin_count
var bin_width
var bin_count_f1t
copy_var bin_count bin_count_f1t
int_to_float bin_count_f1t
copy_var bins_end_pot bin_width
sub_var bin_width bins_start_pot
div_var bin_width bin_count_f1t
#
Precompute the center value of the first bin: bins_start_pot + bin_width / 2.
var center_start
copy_var bin_width center_start
div_var center_start 2
add_var center_start bins_start_pot
#
Loop over the bins, skipping the zero values at the start and end.
var index_flt
copy_var index_start index
loop index < index_end
Calculate center bin potential: center_start + index * bin_width
copy_var index index_flt
int_to_float index_flt
copy_var bin_width potential
mul_var potential index_flt
add_var potential center_start
#
Send the bin center potential and dt / dE for that potential.
pck_start
pck_add potential
pck_add bins[index]
pck_end

P 159
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

add_var index Ti
endloop
on_finished:
cell_off

Example output

L

Pab807A900u,200;eg80F42FFn, 10,200
Pab807B(87u,200;eg80F42FFn, 10,200
Pab807D00Eu,200;eq80F42FFn, 10,200

Pab81CA312u, 200;eg980C3599n, 10,200
Pab81CB698u,200;eg80F42FFn, 10,200
Pab81CCA1Fu,200;eg80C3599n, 10,200
+

15.7. I2C example — temperature sensor

The following example script demonstrates how to communicate with the ADT7420 temperature sensor (see
datasheet) using 12C. This is the temperature sensor on the EmStat Pico Module. Note that the sensor has 12C
bus address 0x48.

The script will first check the ID of the sensor, then configure it for 16-bit continuous mode, and read and log 40
temperature measurements. This will take approximately 10 seconds. If the script is executed using PSTrace, a
plot of the temperature over time will be shown.

I2C ACK status
var ack
loop counter
var i
var temperature
var time
Read buffer
array r 2
Write buffer
array w 2
Configure GPI08-9 for I2C (Mode 2)
set_gpio_cfg 0x0300 2
Configure I2C peripheral to 100 kHz clock, 7-bit address.
i2c_config 100k 7
Initialize ACK status at 0.
store_var ack 01 ja
Read and check device ID.
store_var w[0i] 0x0B aa
i2c_write_read 0x48 w 1i r 1i ack
if ack !'= 0i
abort

P 160
a0e| £ PalmSens

https://www.analog.com/en/products/adt7420.html
https://www.analog.com/media/en/technical-documentation/data-sheets/ADT7420.pdf
https://www.palmsens.com/product/oem-emstat-pico-module/

MethodSCRIPT manual

Last document update: 2025-10-15

endif
if r[@i] != 0x(B
send_string "ERROR: Invalid ID (not an ADT7420 device)"
abort
endif
Configure the sensor for 16-bit mode with continuous conversion
by writing value 0x80@ to address 0x@3 (configuration register).
store_var w[@i] 0x03 aa
store_var w[1i] 0x80 aa
i2c_write 0x48 w 27 ack
if ack != @i
abort
endif
Start timer and logging temperature measurements.
timer_start
store_var i 01 ja
loop i < 40i
Read status register until measurement ready.
store_var w[@i] 0x02 aa
store_var r[0i] 0x80 ja
loop r[@i] & 0x80
i2c_write_read 0x48 w 1i r 1i ack
if ack != @i
abort
endif
endloop
Read timer.
timer_get time
Read temperature value.
store_var w[@i] 0x00 aa
i2c_write_read 0x48 w 1i r 2i ack
if ack != @i
abort
endif
Convert temperature.
Store MSB
copy_var r[@i] temperature
Combine MSB + LSB in one variable.
bit_lsl_var temperature 8i
bit_or_var temperature r[1i]
Handle negative temperatures.
if temperature & 0x8000
sub_var temperature 655361
endif
Convert to float and divide by 128 to get temperature in degrees Celsius.
int_to_float temperature
div_var temperature 128
pck_start
pck_add time
pck_add temperature

P 161
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

pck_end

add_var i 1i
endloop
on_finished:
if ack == Ti

send_string "ERROR: I2C address NACK"
elseif ack == 2i

send_string "ERROR: I2C data NACK"
elseif ack == 3i

send_string "ERROR: I2C data or address NACK"
endif

Example output

L < Start of outer loop (i < 40)

L < Start of wait loop (wait until measurement ready)
+ < End of wait loop

Peb803B5BDu;aa934837Cu <« Data package containing time and temperature

L < Start of wait loop (wait until measurement ready)
+ < End of wait loop

Peb80767C9u;aa%34C086u <« Data package containing time and temperature

L < Start of wait loop (wait until measurement ready)
+ < End of wait loop

Peb80B1A11u;2a93464F8u <« Data package containing time and temperature

.. < Inner loop repeated 37 more times

+ < End of outer loop

15.8. 12C example — real time clock

The below example script demonstrates the use of [2C in combination with the ABLIC S-35390A RTC that can
be found on the EmStat Pico Development Kit. It sets the time and date to the arbitrary value of 2:14 AM 29-08-
2097. Then it will wait 10 seconds and read back the time. See the datasheet of the RTC for a description of the
register formats and how to use it correctly.

var ack

store_var ack @i ja

var i

store_var i 01 ja

array r 7

array w 7

Year = '97

store_var w[@i] 0xE9 aa
Month = August
store_var w[1i] 0x10 aa
Day = 29

store_var w[2i] 0x94 aa
Day of week = friday
store_var w[3i] 0xAQ aa

P 162
a9e| £ PalmSens

https://www.ablic.com/en/semicon/datasheets/rtc/realtime-clock/s-35390a/
https://www.palmsens.com/product/oem-emstat-pico-development-kit/
https://www.ablic.com/en/doc/datasheet/real_time_clock/S35390A_E.pdf

MethodSCRIPT manual

Last document update: 2025-10-15

Hour = 2 AM
store_var w[4i] 0x40 aa
Minute = 14
store_var w[5i] 0x88 aa
Seconds = 0
store_var w[6i] 0x00 aa
Configure I2C GPIOs and set it to 100 kHz clock, 7-bit address
set_gpio_cfg 0x0300i 2
i2c_config 100k 7
Write data to real-time data registers
i2c_write 0x327 w 71 ack
Printing the time as it was written.
i2c_read 0x32i r 71 ack
store_var i 0i ja
loop i < 7i
pck_start
pck_add r[i]
pck_end
add_var i Ti
endloop
Wait ~10 seconds
send_string "Waiting for the time to change."
wait 9500m
Read data from real-time data registers
i2c_read 0x32i r 71 ack
store_var i 0i ja
loop i < 7i
pck_start
pck_add r[i]
pck_end
add_var i Ti
endloop

Example output

L
Paa80000EYi
Paa80000101
Paa8000094i
Paa80000AR
Paa80000401
Paa8000088i
Paa80000001i
+

TWaiting for the time to change.
L
Paa80000E9i
Paa80000101
Paa8000094i

P 163
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Paa80000AQ
Paa80000401
Paa80000881
Paa80000901i
+

The raw communication over I12C is displayed below. The top line contains the SCL, the line below that is SDA.
The bottom lines of each row represent the interpreted data.

O 1 G PO g = R0 T =GN A IR -

@mmmmmm-mmmm
B R L T R T T R T T T S T T

+ 20 o 2R + 200300 o +Mbal IR0 L + MO0 D + M0
' ' ' ¥ ' ¥] ' . ' i ' ¥ ¥ b o '] ' . f [¥ ' i

a}mmmmmmm TR SRR R REDREE TR

15.9. I2C example — EEPROM

The following example demonstrates writing to and reading from the 24L.C32A EEPROM on the EmStat Pico
Development Kit. It will write a counter to the EEPROM and read it back later. Note that the EEPROM may
require some time to finish the write operation before a read will be successful.

Acknowledge value

var ack

Loop variable

var i

#f Temporary value

var v

Write array, 2 bytes address + 32 bytes data

array w 34

Read array, 32 bytes data

array r 32

Configure I2C with 400 kHz clock and 7-bit address
set_gpio_cfg 0x0300i 2i

i2c_config 400k 7i

EEPROM register address MSB (1) and LSB (64) to form 320
store_var w[@i] 11 aa

store_var w[1i] 64i aa

Write data values 0-32 to bytes 2-34 of the array
store_var i 2i ja

Page | 164
a9e| £ PalmSens

https://www.microchip.com/en-us/product/24LC32A
https://www.palmsens.com/product/oem-emstat-pico-development-kit/
https://www.palmsens.com/product/oem-emstat-pico-development-kit/

MethodSCRIPT manual

Last document update: 2025-10-15

store_var v @i ja
loop i < 34i
copy_var v w[i]
add_var i 1i
add_var v Ti
endloop
Write to device
store_var ack @i ja
i2c_write 0x50i w 347 ack
Handle ACK/NACK
if ack = @i
send_string "FAILED to write to EEPROM"
abort
endif
Read EEPROM. Will generate NACK until write is completed.
Variable ack is set to 1 to enter the loop.
store_var ack 11 ja
loop ack != @i
Reset var ack so I2C will not fail when receiving NACK
store_var ack 0i ja
Note the address from the write array is reused
i2c_write_read 0x50i w 2i r 327 ack
send_string "reading EEPROM"
endloop
Print the received data
store_var i 0i ja
loop i < 32i
pck_start
pck_add r[i]
pck_end
add_var i Ti
endloop

Example output

L

+

L

Treading EEPROM
Treading EEPROM
Treading EEPROM
Treading EEPROM
Treading EEPROM
Treading EEPROM
Treading EEPROM
Treading EEPROM
Treading EEPROM
Treading EEPROM
Treading EEPROM

P 165
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

+
L

Paa80000001
Paa80000011
Paa80000021
Paa80000031
Paa8000004i
Paa8000005i
Paa80000061
Paa80000071
Paa80000081
Paa80000091
Paa800000Ai
Paa800000Bi
Paa800000Ci
Paa80000@D1i
Paa800000E i
Paa800000F i
Paa80000101i
Paa8000011i
Paa8000012i
Paa8000013i
Paa80000141
Paa80000151
Paa80000161i
Paa8000017i
Paa8000018i
Paa8000019i
Paa800001Ai
Paa800001B1
Paa800001Ci
Paa800001Di
Paa800001E
Paa800001Fi
+

P 166
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Chapter 16. Document version changes

Version 1.1 Rev 1

e Added support for EmStat Pico firmware v1.1

e Added "Tags" chapter

¢ Added Max range pgstat mode for the EmStat Pico
e Added BiPot / Poly WE support

e Added PAD technique

® The e command now replies with an extra \n to separate the script response from the e command
response

e Added ability to use whitespace in script (tabs and spaces)

e Added error code documentation

Version 1.1 Rev 2

e Corrected EIS auto ranging information

e Added information about loop command output

Version 1.1 Rev 3

e Corrected OCP parameters, does not have set potential
® Corrected set_pgstat_chan command example
e Corrected SWV example comment about bandwidth

® Correct loop example "add" command should be add_var

e Corrected inconsistent names for low power / low speed mode

Version 1.1 Rev 4

® Corrected endloop command was sometimes called end_loop

Version 1.2 Rev 1

® Added conditional statements (if, else, elseif, endif)
® Added abort command

® Added breakloop command

e Added external storage (SD Card) commands

e Added new variable types

e Added supported variable types table

e Added bitwise operators

® Added new GPIO commands (get_gpio, set_gpio_cfg, set_gpio_pullup)

P 167
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

e Added support for integer variables

e Updated error codes

® Added get_time command

® Added timer_start and timer_get commands

® Added set_int, await_int commands

e Added ability to input hexadecimal or binary values

e Added support for arrays

e Added support for specifying what metadata to send in measurement packages
e Added nscans optional parameter for Cyclic Voltammetry
® Added hibernate command

e Added I”C interface

e Added I2C example

Version 1.2 Rev 2

e Added EEPROM example
e Moved EmStat Pico specific information to chapter "device-specific information”
® Added reference to comparator in loop and if command documentation

® Removed outdated warning that meas_loop_eis does not support autoranging

Version 1.3 Rev 1

e Added I2C generic NACK for address or data (for devices that cannot distinguish)
e Added EmStat4 information

® set_autoranging changed having additional VarType parameter

® Added eis_tdd command to retrieve EIS time domain data

® Replaced set_cr and set_potential_range commands with more generic set_range and
set_range_minmax commands

e Added CP technique
e Added LSP technique
e Added Galvanostatic EIS technique

® Added set_i command

Updated error codes

Updated features section

Updated terminology
® set_pgstat_mode now resets all mode settings to default values

® Added set_channel_sync command

e Added bitwise operation commands

P 168
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

® Added float_to_int and int_to_float commands
e Added galvanostat pgstat mode
® Added set_acquisition_frac command

e Added potential ranges in metadata

Version 1.4 Rev 1

e General document changes:
e Rearranged chapters, moved large tables to appendix
e Updated document formatting
e Chapter 3:
e Clarified relation between device communication protocol and MethodSCRIPT
e Chapter 14:
e Added list of supported instruments and MethodSCRIPT versions for each command
e Updated documentation of some commands
e Chapter 15:
e Updated [2C example scripts
e Added links to datasheets of S-35390A (RTC) and ADT7420 (temperature sensor)
e Added EEPROM example
e Appendix A:
e Updated error codes
e Added table mapping instrument firmware versions to MethodSCRIPT versions
e Updated variable types
* MethodSCRIPT changes:
® Updated line numbers to also include comments
® Updated behavior of pck_start/pck_add/pck_end commands
® Added Fast Cyclic Voltammetry (FCV) measurement technique (meas_fast_cv command)
® Added frequency filtering with set_acquisition_frac_autoadjust command
® Added set_e_aux command

® Added masked versions of GPIO commands (set_gpio_msk and get_gpio_msk)

P 169
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Version 1.5 Rev 1

e |ncreased array size on EmStat4 from 32768 to 50000 variables
e Added new MethodSCRIPT commands:
® Mux commands: mux_config, mux_get_channel_count, and mux_set_channel
® AC Voltammetry (ACV) measurement technique: meas_loop_acv
® Multi-Sine EIS (MSEIS) measurement technique: meas_ms_eis
® Fast CA (FCA) measurement technique: meas_fast_ca
e Alternating mux measurement techniques:
® CA: meas_loop_ca_alt_mux
® CP: meas_loop_cp_alt_mux
® OCP: meas_loop_ocp_alt_mux
® iR compensation: set_ir_comp
® Modulo operation: mod_var
® Alter the VarType of a MethodSCRIPT variable: alter_vartype
® Output user notifications using the device LED: notify_led
® Set scan direction for Cyclic Voltammetry (CV): set_scan_dir
e Added support for interpolated strings (-strings), see Section 8.7.1, “Interpolated strings”
e Added support for array access syntax, see Section 8.2.1, “Array Access Syntax”

e Added support for auto-incrementing number in file, see Section 14.12.4, “file_open”

Added support for multicharacter variable names, see Section 8.1, “var”

Updated error codes var types

e Fixed example scripts in chapter 3

® Updated eis_opt command to support fast fixed frequency EIS measurements

®* Command set_autoranging now responds with an error when given negative inputs

e Added missing galvanostatic mode in Chapter 12, PGStat modes and clarified Section B.1, “PGStat mode
properties”

P 170
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Version 1.6 Rev 1

e Added new MethodSCRIPT commands:
® Added smooth command, enabling data smoothing within MethodSCRIPT
® Added peak_detect command, enabling peak searching within MethodSCRIPT
® Added rtc_get command, enabling RTC date and time to be retrieved within MethodSCRIPT

Added explanation of noise level in chapter Section 5.2, “Variable sub package format”

Fixed wrong factors in Table 1, “Sl prefix conversion table”

Updated examples to use new MethodSCRIPT features

Updated inconsistent PAD output potential variable documentation

Updated hibernate command documentation for the EmStat Pico to reflect firmware changes
Added Sensit Wearable
e Added Nexus

Version 1.6 Rev 2

® Fixed wrong VT_POTENTIAL_AIN1 ID for the Sensit Wearable.

Version 1.7 Rev 1

e Easier way of using bipot:

® Added command set_bipot_mode (replaces set_poly_we_mode , which had to be used from the bipot
channel)

® Added command set_bipot_potential (replaces set_e, which had to be used from the bipot channel)
® Added optional argument add_meas
® Added new VarTypes, such as bb (bipot current)

® Deprecated command set_poly_we_mode and PGStat mode 5 (poly_we) in favor of the new
set_bipot_mode command

® Deprecated optional argument poly_we in favor of add_meas
e Added dual EIS measurement technique (Nexus only):
® Added meas_loop_eis_dual MethodSCRIPT command.
® Added optional arguments eis_dual_acdc and eis_dual_tdd
® Added battery_perc MethodSCRIPT command
® Added beep MethodSCRIPT command
® Added optional argument filter_type
¢ Added optional argument ocp
® Added pow_var MethodSCRIPT command
® Added get_progress MethodSCRIPT command

P 171
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

e The EmStat Pico now uses the external Ablic S-35390A RTC for its system date and time if enabled in the
peripheral configuration register.

Version 1.8 Rev 1

® Added meas_scp MethodSCRIPT command
® Added trim_enable MethodSCRIPT command
® Added linear_fit MethodSCRIPT command
® Added subarray MethodSCRIPT command
¢ Added mean MethodSCRIPT command
® Added log_var MethodSCRIPT command
e Added display commands for the EmStat4T
e display_btns
e display_clear
e display_draw
e display_icon
e display_inp_num
e display_keyboard
e display_progress
e display_scroll_add
e display_scroll_get
e display_text
e Added gr scan for the EmStat4T

¢ With new optional command qgr_log

P 172
age| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Appendix A: Error codes

The following table lists all error codes that can be returned by MethodSCRIPT instruments.

However, in some cases, the same error condition could result in a different error code when

e The error codes and their meaning are the same for all instruments and firmware versions.
using another instrument or firmware version.

Table 13. Error code lookup table

0x0001 An unspecified error has occurred

0x0002 An invalid VarType has been used

0x0003 The command was not recognized

0x0004 Unknown register

0x0005 Register is read-only

0x0006 Communication mode invalid

0x0007 An argument has an unexpected value

0x0008 Command exceeds maximum length

0x0009 The command has timed out

0x000B Cannot reserve the memory needed for this var

0x000C Cannot run a script without loading one first

Ox000E An overflow has occurred while averaging a measured value
Ox000F The given potential is not valid

0x0010 A variable has become either "NaN" or "inf"

0x0011 The input frequency is invalid

0x0012 The input amplitude is invalid

0x0014 Cannot perform OCP measurement when cell on

0x0015 CRC invalid

0x0016 An error has occurred while reading / writing flash
0x0017 The specified flash address is not valid for this device
0x0018 The device settings have been corrupted

0x0019 Authentication error

Ox001A Calibration invalid

0x001B This command or part of this command is not supported by the current device
0x001C Step Potential must at least 1 DAC LSB for this technique
Page | 173

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

0x001D Pulse Potential must at least 1 DAC LSB for this technique
Ox001E Amplitude must at least 1 DAC LSB this technique

Ox001F Product is not licensed for this technique

0x0020 Cannot have more than one high speed and/or max range mode enabled
0x0021 The specified PGStat mode is not supported

0x0022 Channel set to be used as Poly WE is not configured as Poly WE
0x0023 Command is invalid for the selected PGStat mode

0x0024 The maximum number of vars to measure has been exceeded
0x0025 The specified PAD mode is unknown

0x0026 An error has occurred during a file operation

0x0027 Cannot open file, a file with this name already exists

0x0028 Variable divided by zero

0x0029 GPIO pin mode is not known by the device

0x002A GPIO configuration is incompatible with the selected operation
0x002B CRC of received line was incorrect (CRC16-ext)

0x002C ID of received line was not the expected value (CRC16-ext)
0x002D Received line was too short to extract a header (CRC16-ext)
0x002E Settings are not initialized

Ox002F Channel is not available for this device

0x0030 Calibration process has failed

0x0032 Critical cell overload, aborting measurement to prevent damage.
0x0033 FLASH ECC error has occurred

0x0034 Flash program operation failed

0x0035 Flash Erase operation failed

0x0036 Flash page/block is locked

0x0037 Flash write operation on protected memory

0x0038 Flash is busy executing last command.

0x0039 Operation failed because block was marked as bad

0x003A The specified address is not valid

0x003B An error has occurred while attempting to mount the filesystem
0x003C An error has occurred while attempting to format the filesystem memory
Page | 174

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

0x003D A timeout has occurred during SPI commmunication

OxO03E A timeout has occurred somewhere

Ox003F The calibrations registers are locked, write actions not allowed.

0x0040 Memory module not supported.

0x0041 Flash memory format not recognized or supported.

0x0042 This register is locked for current permission level.

0x0043 Register is write-only

0x0044 Command requires additional initialization

0x0045 Configuration not valid for this command

0x0046 The multiplexer was not found.

0x0047 The filesystem has to be mounted to complete this action.

0x0048 This device is not a multi-device, no serial available.

0x004A MCU register access is not allowed, only RAM and peripherals are accessible.
0x004B Runtime (comm) command argument too short to be valid.

0x004C Runtime (comm) command argument has an invalid format.

0x004E Hibernate wake up source is invalid

0x004F Hibernate requires at least one wake up source, none was given.

0x0050 Wake pin for hibernate not configured as input

0x0051 The code provided to the permission register was not valid.

0x0052 An overrun error occurred on a communication interface (e.g. UART).
0x0053 Argument length incorrect for this register.

0x0055 The GPIO pins requested to change do not exist on this instrument.
0x0056 The selected GPIO pin mode is not allowed (by NVM config or device type).
0x0057 The on-board flash module has timed out.

0x0058 Timing error during fast measurement (possibly caused by communication).
Ox005A The instrument cannot meet the requested measurement timing.

0x005B The variable type is already being measured.

0x006D The COMM command expected an hexadecimal value, but received something else.
0x006E The COMM command expected a decimal value, but received something else.
0x0071 The provided key does not fit the lock on this register.

0x0072 12C port expander did not acknowledge a command

Page | 175

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

0x0073 Filesystem module not supported

0x0074 The IP address is not available (yet).

Ox007A There is no measurement channel left for the requested measurement.

0x007B Temperature measurements during EIS with > 8 kHz are not supported.

0x007C The specified mode is unknown

0x007D The ADXL367 did not acknowledge an 12C command

Ox007E An unexpected error occurred during an 12C operation.

Ox007F 12C bus timeout during 12C operation (probably caused by 12C target device).

0x0080 The CE is oscillating.

0x0082 Operation requires system warnings to be cleared.

0x0083 Filesystem operations are not supported on this device.

0x0084 The requested variable type does not support ranging.

0x0085 The selected GPIO pin does not support harware synchronisation.

0x0086 Hardware select must be disabled before the role pin can be disabled.

0x0087 The role pin must be configured before the hadware select can be enabled

0x0088 The instrument has reserved this GPIO pin to be controlled by hardware (e.g. file system or
HW-sync).

0x0089 This GPIO pin cannot be unlocked, as it was not locked in the first place

0x008A This GPIO pin can only be used for interfacing with a specific external memory

0x008B The BiPot should be disabled.

0x008C iR compensation should be disabled.

0x008D The key provided for the reset command is incorrect.

0x008E The SPI interface is not confgiured while it is required for the filesystem

0x008F The SPI interface requires the SPI pins to be configured to 'peri 1'

0x0091 The GPIO is locked for a multiplexer (e.g. Mux8R2 or PicoMux)

0x0092 The GPIO is locked for external storage (e.g. SD-card or NAND flash)

0x0093 The GPIO is locked for an external LED

0x0094 The GPIO is locked for hardware synchronisation

0x0095 The GPIO is locked for external PGStat signals

0x0096 The GPIO is locked for some special purpose on this instrument

0x0097 An attempt was made to access a GPIO using a key while it is unlocked

0x0098 The configuration set using the Peripheral configuration (0x01) register is invalid

Page | 176

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

0x0099 Filesystem file is corrupt

0x009A Filesystem failed to format

0x009B Filesystem I/O error

0x009C Filesystem didn’t have enough memory to perform the operation
0x009D Filesystem path was too long to handle

Ox009E Filesystem the path was not valid

Ox009F Filesystem could not find the file specified

0x00A0 Filesystem FM not supported

Ox00A1 Filesystem doesn’t have a listing

Ox00A2 Filesystem is not initialized

Ox00A3 Filesystem file is open, but it should not have been

0Ox00A4 Filesystem file is not open

0x00A5 Filesystem does not support this feature

0x00A6 Filesystem expected something which is not true.

Ox00A7 Filesystem could not find the path

Ox00A8 Access denied due to prohibited access or directory full

0x00A9 The file/directory object is invalid

Ox00AA The physical drive is write protected

OxO00AB The logical drive number is invalid

Ox00AC There is no valid filesystem volume

Ox00AD The format operation was aborted due to any problem

OxO0AE The operation is rejected according to the file sharing policy

Ox00AF Working buffer could not be allocated

0x00BO Too many files opened at once by filesystem

0x00B1 Parameter given to the filesystem is invalid

0x00B2 The file mode is invalid (should be readonly, new, append, overwrite).
0x00B3 The pin mode requred for the LED mapping is not allowed for this pin
0x00B4 The pin mode requred for the HW-sync role is not allowed for this pin
0x00B5 The pin mode requred for the HW-sync start mapping is not allowed for this pin
0x00B6 Use of the encrypted filesystem failed

0x00B7 The user key is not in a valid state for this cmmand

Page | 177

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

0x00B8 The communications protocol is not in valid lock state for this command
0x4001 The script command is unknown

0x4004 An unexpected character was encountered

0x4005 The script is too large for the internal script memory

0x4008 This optional argument is not valid for this command

0x4009 The stored script is generated for an older firmware version and cannot be run
0x400B Measurement loops cannot be placed inside other measurement loops
0x400C Command not supported in current situation

0x400D Scope depth too large

0x400E The command had an invalid effect on scope depth

0x400F Array index out of bounds

0x4010 |2C interface was not initialized with i2c_config command

0x4011 This is an error, NAck flag not handled by script

0x4012 Something unexpected went wrong.

0x4013 12C clock frequency not supported by hardware

0x4014 Non integer Sl vars cannot be parsed from hex or binary representation
0x4016 RTC was selected as wake-up source and selected time is not supported
0x4017 Arrays must be the same size but are not

0x4018 The script has ended unexpectedly.

0x4019 The script command is only valid for a multichannel (combined) device
0x401A The script command cannot be called from within a measurement loop.
0x401B the pck sequence is called wrong

0x401C The maximum amounts of variables per packet has been exceeded.
0x401D The file path is too long for the file system.

0x401E Insufficient memory to store array index

0x4020 A timeout has occurred for one of the script commands

0x4021 The mux is not initialized/configured.

0x4022 Measurement loop timing is too fast to use with multiplexer

0x4023 The script command is only valid for a device with iR compensation
0x4024 The resistance value is to big for the whole autorange range

0x4025 The resistance value is to big for current current range

Page | 178

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

0x4026 The variable already exists when declared

Ox4027 This command requires the cell to be enabled with the cell_on command

0x4028 This command requires the cell to be disabled with the cell_off command

0x4029 The technique requires that at least one step should be made

0x402A The variable names do not fit in memory anymore, try using shorter names.

0x402B The variable name did not start with 'a'-'z' or otherwise contained anything other than 'a'-
'z','0'-'9"and '_".

0x402C The variable name is too long to be processed.

0x402D The file mode is invalid.

0x402E The file mode does not support a counter in the file path.

0x402F The file path with the maximum counter value already exists.

0x4030 There are too many files open already.

0x4031 The specified multi device type is not defined.

0x4032 Cannot set the potential (or potential range) within the active measurement loop.

0x4033 Cannot set the current (or current range) within the active measurement loop.

0x4034 The used feature is not licensed on this product.

0x4035 The given filter type is unknown or not supported.

0x4036 The given command is only allowed within measurement loops.

0x4037 A computation has resulted in an overflow

0x4038 The array access was not correctly formed

0x4039 The literal argument was not correctly formed

0x403A The subarray declaration was out of bounds for the source array

0x403B A file needs to be opened before it can be written to

0x403C The MethodScript output mode is unknown

0x4200 MScript argument value cannot be negative for this command

0x4201 MScript argument value cannot be positive for this command

0x4202 MScript argument value cannot be zero for this command

0x4203 MScript argument value must be negative for this command (also not zero)

0x4204 MScript argument value must be positive for this command (also not zero)

0x4205 MScript argument value is outside the allowed bounds for this command

0x4206 MScript argument value cannot be used for this specific instrument

0x4207 MScript argument datatype (float/int) is invalid for this command

Page | 179

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

0x4208 MScript argument reference was invalid (not ‘a' - 'z")

0x4209 MScript argument variable type is invalid or not supported for this command
0x420A An unexpected, additional, (optional) MScript argument was provided
0x420B MScript argument variable is not declared

0x420C MScript argument is of type var, which is not supported by this command
0x420D MScript argument is of type literal, which is not supported by this command
0x420E MScript argument is of type array, which is not supported by this command
Ox420F MScript argument array size is insufficient

0x4210 An f-string contains an opening brace that is never closed

Ox4211 MScript argument is an array element, which is not supported by this command
Ox7FFF A fatal error has occurred, the device must be reset

Page | 180

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Appendix B: Device-specific information

For more information, please consult the instrument datasheet.

B.1. PGStat mode properties

This section shows the most important changes in specifications depending on the selected PGStat mode. See
Chapter 12, PGStat modes for a description of all PGStat modes.

B.1.1. Nexus

The Nexus accepts the Low Speed, High Speed, and Max Range modes, but there is no
functional difference between these modes.

Table 14. Potentiostat mode properties for Nexus.

Parameter Min. value Max. value

Bandwidth - 1 MHz
Potential range -10.0V 10.0V
Dynamic potential window -10.0V 10.0V

Table 15. Galvanostat mode properties for Nexus.

Parameter Min. value Max. value

Bandwidth - 1 MHz
Current range -1.0A 1.0A
B.1.2. EmStat4 HR

The EmStat4 accepts the Low Speed, High Speed, and Max Range modes, but there is no
functional difference between these modes.

Table 16. Potentiostat mode properties for EmStat4 HR.

Parameter Min. value Max. value

Bandwidth - 500 kHz
Potential range -6.0V 6.0V
Dynamic potential window -6.0V 6.0V

Table 17. Galvanostat mode properties for EmStat4 HR.

Parameter Min. value Max. value

Bandwidth - 500 kHz
Current range -200 mA 200 mA

P 181
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

B.1.3. EmStat4 LR

The EmStat4 accepts the Low Speed, High Speed, and Max Range modes, but there is no
functional difference between these modes.

Table 18. Potentiostat mode properties for EmStat4 LR.

Parameter Value min Value max

Bandwidth - 500 kHz
Potential range -3.0V 3.0V
Dynamic potential window -3.0V 3.0V

Table 19. Galvanostat mode properties for EmStat4 LR.

Parameter Min. value Max. value

Bandwidth - 500 kHz

Current range -30 mA 30 mA

B.1.4. EmStat Pico

Table 20. EmStat Pico low speed mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 100 Hz
Potential range -1.25V 20V
Dynamic potential window 2.2V 2.2V

Table 21. EmStat Pico high speed mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 200 kHz
Potential range -1.7V 20V
Dynamic potential window 1.214V 1.214V

Table 22. EmStat Pico max range mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 100 Hz
Potential range -1.7V 20V
Dynamic potential window 26V 26V

P 182
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

B.1.5. Sensit Wearable

Table 23. Sensit Wearable low speed mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 100 Hz
Potential range -1.25V 20V
Dynamic potential window 2.2V 2.2V

Table 24. Sensit Wearable high speed mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 200 kHz
Potential range -1.7V 20V
Dynamic potential window 1.214V 1.214V

Table 25. Sensit Wearable max range mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 100 Hz
Potential range -1.7V 20V
Dynamic potential window 26V 26V

B.2. EIS properties

Table 26. Nexus potentiostatic EIS properties.

Parameter Value

Max. amplitude (Vaws) 0.300 V

Max. frequency 1 MHz

Table 27. EmStat4 potentiostatic EIS properties.

Parameter Value

Max. amplitude (Vaws) 0.900 V
Max. frequency 200 kHz

Table 28. EmStat4 galvanostatic EIS (GEIS) properties.

Parameter Value

Max. amplitude (Agws) 0.9 x CR!

Max. frequency 200 kHz

T With GEIS, the maximum amplitude is a factor of the selected current range, e.g., at 10 mA CR the max. (RMS)

P 183
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

amplitude is 9 mA.

Table 29. EmStat Pico potentiostatic EIS properties.

Parameter Value

Max. amplitude (Vaws) 0.429V

Max. frequency 200 kHz

Table 30. Sensit Wearable potentiostatic EIS properties.

Parameter Value

Max. amplitude (Vaus) 0.429V
Max. frequency 200 kHz
B.3. Current ranges

B.3.1. Nexus

Table 31. Nexus potentiostat current ranges.

warning

0x10 100pA 20.48 pA 409.6 pA 486.4 pA 512 pA
0x00 1nA 204.8 pA 4.096 nA 4.864 nA 5.12 nA
0x01 10nA 2.048 nA 40.96 nA 48.64 nA 51.2 nA
0x02 100nA 20.48 nA 409.6 nA 486.4 nA 512 nA
0x03 1UA 204.8 nA 4.096 pA 4.864 pA 5.12 pA
0x04 10uA 2.048 pA 40.96 pA 48.64 pA 51.2 YA
0x05 100UA 20.48 pA 409.6 pA 486.4 pA 512 pA
0X06 1mA_tia 204.8 pA 4.096 mA 4.864 mA 5.12 mA
0x07 10mA_tia 2.048 mA 40.96 mA 48.64 mA 51.2 mA
0x08 1mA 204.8 pA 4.096 mA 4.864 mA 5.12 mA
0x09 10mA 2.048 mA 40.96 mA 48.64 mA 51.2 mA
OxOa 100mA 20.48 mA 409.6 mA 486.4 mA 512 mA
0xOb 1A 204.8 mA - - 11A

Table 32. Nexus BiPot current ranges.

warning

0x10 100pA 20.55 pA 411 pA 488 pA 513.7 pA

Page | 184
a9e| £ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

warning

0x00 205.5 pA 411 nA 4.88 nA 5.137 nA
0x01 10nA 2.055 nA 41.1nA 48.8 nA 51.37 nA
0x02 100nA 20.55 nA 411 nA 488 nA 518.7 nA
0x03 1UA 205.5 nA 411 pA 4.88 pA 5.137 pA
0x04 10uA 2.055 pA 411 pA 48.8 pA 51.37 YA
0x05 100UA 20.55 pA 411 pA 488 pA 513.7 pA
0x06 TmA 205.5 A 411 mA 4.88 mA 5.137 mA
0x07 10mA 2.055 mA 41.1 mA 48.8 mA 51.37 mA

Table 33. Nexus galvanostat current ranges.

Index Current range name

0x20 1nA
Ox21 10 nA
0x22 100 nA
0x23 1 UA
0x24 10 UA
0x25 100 UA
0x26 1 mA (tia)
0x27 10 mA (tia)
0x28 1 mA
0x29 10 mA
Ox2A 100 mA
0x2B 1A

B.3.2. EmStat4 LR

Table 34. EmStat4 LR potentiostat current ranges.

Current range Overload .
Index 9 Underload \ Overload Maximum
name warning

0x03 1nA 123 pA 2.46 nA 2.92 nA 3nA
0x06 10 nA 1.23nA 24.6 nA 29.2 nA 30 nA
0x09 100 nA 12.3nA 246 nA 292 nA 300 nA
0x0C 1A 123 nA 2.46 pA 2.92 pA 3 pA
Page | 185

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

Current range Overload .
Index g Underload . Overload Maximum
name warning

OXOF 10 pA 1.23 pA 24.6 YA 29.2 YA 30 pA
ox12 100 pA 12.3 pA 246 PA 292 pA 300 pA
0x15 1 mA 123 pA 2.46 MA 2.92 mA 3 mA

0x18 10 mA 1.23 mA 24.6 MA 29.2 mA 30 mA

Table 35. EmStat4 LR galvanostat current ranges.

Index Current range name

0x06 10 nA
0x0C 1 pA
0x12 100 pA
0x18 10 mA

B.3.3. EmStat4 HR

Table 36. EmStat4 HR potentiostat current ranges.

Current range Overload .
Index 9 Underload . Overload Maximum
name warning

0x09 100 nA 12.3nA 246 nA 292 nA 300 nA
0x0C 1A 123 nA 2.46 pA 2.92 pA 3 pA
OxOF 10 pA 1.23 A 24.6 pA 29.2 pA 30 pA
0x12 100 pA 12.3 A 246 pA 292 pA 300 pA
Ox15 1TmA 123 A 2.46 mA 2.92 mA 3 mA
0x18 10 mA 1.283 mA 24.6 mA 29.2 mA 30 mA
0x1B 100 mA 12.3 mA 246 mA 292 mA 200 mA
Page | 186

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Table 37. EmStat4 HR galvanostat current ranges.

Index Current range name

0x0C 1 pA
Ox12 100 pA
0x18 10 mA
Ox1B 100 mA

B.3.4. EmStat Pico

Table 38. EmStat Pico low speed mode.

Index CUTEEE (LA Underload Over!oad Overload Maximum
name warning
0x0

100 nA 2.44 nA 48.9 nA 58.1 nA 60.0 nA
Ox1 1.95 pA 35.1 nA 956 nA 1.13 pA 1.17 pA
Oox2 3.91 pA 95.6 nA 1.91 pA 2.27 pA 2.34 pA
0x3 7.81 pA 191 nA 3.82 A 4.54 pA 4.68 pA
Ox4 15.63 pA 382 nA 7.65 pA 9.08 pA 9.38 A
0x5 31.25 pA 764 nA 15.3 pA 1.82 LA 18.7 A
0x6 62.5 A 1.53 A 30.6 pA 36.3 A 37.5 PA
Oox7 125 pA 3.06 pA 61.2 pA 72.6 pA 75.0 YA
0x8 250 pA 6.12 A 122 pA 145 pA 150 pA
0x9 500 pA 12.2 A 245 pA 291 pA 300 pA
OxA 1mA 24.4 pA 489 pA 581 pA 600 pA
0xB 5mA 122 pA 2.45 mA 2.91 mA 3.00 mA

Table 39. EmStat Pico high speed mode.

Current range Overload .
Index 9 Underload . Overload Maximum
name warning

0x80 100 nA 2.44 nA 48.9 nA 58.1 nA 60.0 nA
0x81 1 pA 24.4 nA 489 nA 581 nA 600 nA
0x82 6.25 pA 153 nA 3.06 pA 3.63 pA 3.75 pA
0x83 12.5 A 306 nA 6.12 A 7.26 A 7.50 pA
0x84 25 pA 612 nA 12.2 A 14.5 pA 15.0 A
0x85 50 YA 1.22 pA 24.5 A 29.1 A 30.0 pA
0x86 100 pA 2.44 A 48.9 A 58.1 pA 60.0 pA
Page | 187

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

Current range Overload .
Index g Underload . Overload Maximum
name warning

0x87 200 pA 4.90 pA 97.9 pA 116 pA 120 pA
0x88 1TmA 24.4 pA 489 pA 581 pA 600 pA
0x89 5 mA 122 pA 2.45 mA 2.91 mA 3.00 mA

Table 40. EmStat Pico max range mode.

Current range Overload .
Index g Underload . Overload Maximum
name warning

0x80 100 nA 2.44 nA 48.9 nA 58.1 nA 60.0 NA
Ox81 1 pA 24.4 nA 489 nA 581 nA 600 nA

0x82 6.25 LA 153 nA 3.06 YA 3.63 YA 3.75 pA
0x83 12.5 pA 306 nA 6.12 YA 7.26 YA 7.50 uA
0x84 25 pA 612 nA 12.2 pA 14.5 pA 15.0 pA
0x85 50 pA 1.22 pA 24.5 PA 29.1 YA 30.0 pA
0x86 100 pA 2.44 pA 48.9 PA 58.1 YA 60.0 A
0x87 200 pA 4.90 pA 97.9 YA 116 pA 120 pA

0x88 1 mA 24.4 A 489 PA 581 pA 600 pA

0x89 5mA 122 pA 2.45 mA 2.91 mA 3.00 mA

B.3.5. Sensit Wearable

Table 41. Sensit Wearable low speed mode.

Index (CTCEE (L Underload Overl.oad Overload Maximum
name warning
0ox0

100 nA 2.44 nA 48.9 nA 58.1 nA 60.0 nA
Ox1 1.95 pA 35.1 nA 956 nA 1.13 pA 1.17 pA
Oox2 3.91 pA 95.6 nA 1.91 pA 2.27 pA 2.34 pA
0x3 7.81 pA 191 nA 3.82 A 4.54 A 4.68 pA
Ox4 15.63 pA 382 nA 7.65 pA 9.08 pA 9.38 pA
0x5 31.25 pA 764 nA 15.3 A 1.82 pA 18.7 pA
0x6 62.5 A 1.53 A 30.6 pA 36.3 A 37.5 pA
Ox7 125 pA 3.06 pA 61.2 pA 72.6 pA 75.0 YA
0x8 250 pA 6.12 pA 122 pA 145 pA 150 pA
0x9 500 pA 12.2 pA 245 PA 291 pA 300 pA
Page | 188

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Index CUTEEE (LA Underload Over!oad Overload Maximum
name warning
OxA

1 mA 24.4 A 489 PA 581 A 600 pA

0xB 5 mA 122 A 2.45 mA 2.91 mA 3.00 mA

Table 42. Sensit Wearable high speed mode.

Current range Overload .
Index g Underload . Overload Maximum
EINE warning

0x80 100 nA 2.44 nA 48.9 nA 58.1 nA 60.0 nA
0x81 1 pA 24.4 nA 489 nA 581 nA 600 nA

0x82 6.25 pA 153 nA 3.06 pA 3.63 pA 3.75 pA
0x83 12.5 pA 306 nA 6.12 pA 7.26 pA 7.50 pA
0x84 25 pA 612 nA 12.2 LA 14.5 pA 15.0 pA
0x85 50 pA 1.22 pA 24.5 pA 29.1 pA 30.0 pA
0x86 100 pA 2.44 uA 48.9 pA 58.1 pA 60.0 pA
0x87 200 pA 4.90 pA 97.9 pA 116 pA 120 pA

0x88 1mA 24.4 pA 489 pA 581 pA 600 pA

0x89 5mA 122 pA 2.45 mA 2.91 mA 3.00 mA

Table 43. Sensit Wearable max range mode.

Current range Overload .
Index g Underload . Overload Maximum
name warning

0x80 100 nA 2.44 nA 48.9 nA 58.1 nA 60.0 nA
0x81 1 pA 24.4 nA 489 nA 581 nA 600 nA

0x82 6.25 LA 153 nA 3.06 A 3.63 YA 3.75 pA
0x83 12.5 pA 306 nA 6.12 YA 7.26 YA 7.50 A
0x84 25 A 612 nA 12.2 pA 14.5 pA 15.0 pA
0x85 50 pA 1.22 pA 24.5 pA 29.1 YA 30.0 pA
0x86 100 pA 2.44 pA 48.9 YA 58.1 A 60.0 A
0x87 200 pA 4.90 pA 97.9 YA 116 pA 120 pA

0x88 1 mA 24.4 pA 489 PA 581 A 600 pA

0x89 5mA 122 pA 2.45 mA 2.91 mA 3.00 mA

B.4. Potential ranges

Table 44. Nexus galvanostat potential ranges.

P 189
a9e| £ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

warning

0x00 409.6 mV 8.192V 9.728V 10.24 V
0x01 100mV 40.96 mV 819.2 mV 972.8 mV 1.024V
0x02 10mV 4.096 mV 81.92 mV 97.28 mV 102.4 mV
0x03 mV 409.6 pv 8.192 mV 9.728 mV 10.24 mV

Table 45. EmStat4 LR galvanostat potential ranges.

name warnlng

10mV 1.26 mV 25.2mV 29.9 mV 30 mV
1 20 mvV 2.52 mV 50.4 mV 59.9 mV 60 mV
2 50 mV 6.30 mV 126 mV 150 mV 150 mV
3 100 mV 12.6 mV 252 mV 299 mV 300 mV
4 200 mV 25.2 mV 504 mV 599 mV 600 mV
5 500 mV 63.0 mV 1.26V 1.50V 1.5V
6 1V 126 mV 2.52V 299V 3V

Table 46. EmStat4 HR galvanostat potential ranges.

name warnlng

10mvV 2.53 mV 50.6 mV 60.1 mV 60 mV
1 20 mV 5.06 mV 101 mV 120 mV 120 mV
2 50 mV 12.7 mV 253 mV 300 mV 300 mV
3 100 mV 25.3 mV 506 mV 601 mV 600 mV
4 200 mV 50.6 mV 1.01V 1.20V 1.2V
5 500 mV 127 mV 2.53V 3.00V 3V
6 1V 253 mV 5.06 V 6.01V 6V

B.5. Supported variable types for meas command

Table 47. Supported variable types Nexus.

ab VT_POTENTIAL

ac VT_POTENTIAL_CE

ag VT_POTENTIAL_WE_VS_CE
Page | 190

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

as VT_POTENTIAL_AINO

ah VT_POTENTIAL_S2_VS_RE
ai VT_POTENTIAL_SE_V2_S2
ba VT_CURRENT

bb VT_CURRENT_BIPOT

ed VT_TEMPERATURE

ef VT_TEMPERATURE_BOARD

Table 48. Supported variable types EmStat4.

ab VT_POTENTIAL

ac VT_POTENTIAL_CE

ae VT_POTENTIAL_RE

ag VT_POTENTIAL_WE_VS_CE
as VT_POTENTIAL_AIN®

ba VT_CURRENT

Table 49. Supported variable types EmStat Pico.

ab VT_POTENTIAL

ac VT_POTENTIAL_CE

ae VT_POTENTIAL_RE

ag VT_POTENTIAL_WE_VS_CE
as VT_POTENTIAL_AINO

at VT_POTENTIAL_AIN1

au VT_POTENTIAL_AIN2

ba VT_CURRENT

Table 50. Supported variable types Sensit Wearable.

ab VT_POTENTIAL

ac VT_POTENTIAL_CE

ae VT_POTENTIAL_RE

ag VT_POTENTIAL_WE_VS_CE
at VT_POTENTIAL_AINT
Page | 191

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

ba VT_CURRENT
ef VT_TEMPERATURE _BOARD

VT_POTENTIAL_AINT should not be used on a standard Sensit Wearable. However if the
device has been customised to use an external NTC, VT_POTENTIAL_AINT measures the
voltage on that NTC. In such cases, the VT_TEMPERATURE_BOARD parameter is no longer
useful.

For further information on customising the NTC, please contact PalmSens directly.

B.6. Device I/O pin configurations

Table 51. EmStat4 I/O pin configuration.

N S O S

0x0001 GPIOO Digital Input Digital Output
0x0002 GPIO1 Digital Input Digital Output
0x0004 GPIO2* Digital Input Digital Output
0x0008 GPIO3 Digital Input Digital Output
0x0010 GPIO4 Digital Input Digital Output
0x0020 GPIO5_WAKE Digital Input Digital Output
0x0040 GPIO6_PWM Digital Input Digital Output

* On some devices, such as the EmStat4R / EmStat4 Go, GPIO2 is used for the external cell LED and cannot be
used as general-purpose /0O pin.

Table 52. EmStat Pico I/O pin configuration.

e Prrame ———ode0 ——ode1 —odez

0x0001 GPIOO_PWM Digital Input Digital Output Shutdown (output)
0x0002 GPIO1_SPI_MISOt Digital Input Digital Output SPI flash memory
0x0004 GPIO2_SPI_CLK! Digital Input Digital Output SPI flash memory
0x0008 GPIO3_SPI_MOSIt Digital Input Digital Output SPI flash memory
0x0010 GPIO4_SPI_CS0f Digital Input Digital Output SPI flash memory
0x0020 GPIO5 Digital Input Digital Output

0x0040 GPIO6* Digital Input Digital Output

0x0080 GPIO7_WAKE Digital Input Digital Output Wake from sleep (Active low)
0x0100 12C_SCL Digital Input® Digital Output? [2C

0x0200 12C_SDA Digital Input? Digital Output? [2C

Page | 192

£ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

* On some devices, such as the Sensit BT, GPIO6 is used for the external cell LED and cannot be used as
general-purpose 1/0 pin.

T For devices with on-board storage memory that is always available, such as the Sensit BT, GPIO1-4 are
reserved and cannot be used as general-purpose I/O pins.

® Using the 12C lines as digital I/O is strongly discouraged and will disable the instrument’s internal and external
12C bus along with the on board temperature sensor.

Table 53. Sensit Wearable I/O pin configuration.

I T T N Y

0x0002 SPI_MISO Not available Not available SPI flash memory*

0x0004 SPI_CLK Not available Not available SPI flash memory*

0x0008 SPI_MOSI Not available Not available SPI flash memory*

0x0010 SPI_CS0 Not available Not available SPI flash memory*

0x0080 GPIO7_WAKE Digital Input Not available Wake from sleep (Active low)
0x0100 12C_SCL Not available Not available [2C*

0x0200 12C_SDA Not available Not available [oC*

* It is not necessary to configure the SPI or 12C pins on the Sensit Wearable, they are always assigned to SPI
and 12C.

B.7. Measurement channels

Some instruments (such as the Nexus) are capable of measuring multiple channels simultaneously. These
parallel input channels can be added to another MethodSCRIPT command using the add_meas() optional
argument.

Table 54. Nexus signal distribution

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

VT_CURRENT VT_POTENTIA VT_CURRENT VT_POTENTIA VT_TEMPERA VT_TEMPERA VT_POTENTIA

L _BIPOT L CE TURE TURE_BOARD L_AINO
VT_POTENTIA VT_POTENTIA VT_POTENTIA
L_RE L. S2 VS RE L _WE VS_CE

VT_POTENTIA

L_SE_VS_S2

P 193
a9e| £ PalmSens

MethodSCRIPT manual

Last document update: 2025-10-15

Appendix C: Variable types

The following table lists all variable types that are defined in MethodSCRIPT. All IDs not listed in this table are
reserved for future use. It is not recommended to use other variable types than the ones listed in this table.

Table 55. Variable types lookup table

e

VT_UNKNOWN aa Unknown (not initialized)

VT_POTENTIAL ab Measured WE voltage vs RE

VT_POTENTIAL_CE ac Measured CE voltage vs GND

VT _POTENTIAL_SE ad Measured SE voltage vs GND

VT_POTENTIAL_RE ae Measured RE voltage vs GND

VT_POTENTIAL_WE af Measured WE vs GND

VT_POTENTIAL WE_VS_CE ag Measured WE voltage vs CE

VT_POTENTIAL S2 VS RE ah Measured second sense voltage vs RE.
VT_POTENTIAL _SE _VS_S2 ai Measured SE voltage vs second sense.

VT _POTENTIAL_AINO as Measured analog input O voltage
VT_POTENTIAL_AIN1 at Measured analog input 1 voltage
VT_POTENTIAL_AIN2 au Measured analog input 2 voltage

VT_CURRENT ba Measured WE current

VT_CURRENT_BIPOT bb Measured WE2 current

VT_PHASE ca Measured phase

VT_IMP cb Measured impedance

VT_ZREAL cc Measured real part of complex impedance

VT _ZIMAG cd Measured imaginary part of complex impedance
VT_EIS_TDD_E ce Measured RE potential Time Domain Data
VT_EIS TDD_I cf Measured WE current Time Domain Data
VT_EIS_FS cg Sampling frequency used for EIS measurement
VT_EIS_E_AC ch Measured AC potential

VT_EIS_E_DC ci Measured DC potential

VT_EIS I _AC cj Measured AC current

VT_EIS_I DC ck Measured DC current

VT _ZREAL_BIPOT cl Measured real part of complex bipot impedance
VT _ZIMAG_BIPOT cm Measured imaginary part of complex bipot impedance
Page | 194

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

Name | D [Deecipin |

VT _ZREAL_S2 VS _RE cn Measured real part of complex second sense impedance
VT_ZIMAG_S2 VS RE co Measured imaginary part of complex second sense impedance
VT_ZREAL_SE _VS_S2 cp Measured real part of complex second sense impedance
VT _ZIMAG_SE VS _S2 cq Measured imaginary part of complex second sense impedance
VT_EIS_TDD_BIPOT cr Measured bipot current time domain data

VT_EIS_TDD _S2 VS _RE cs Measured S2 vs RE potential time domain data
VT_EIS_TDD SE VS _S2 ct Measured SE vs S2 potential time domain data
VT_EIS_AC_BIPOT cu Measured AC bipot current

VT_EIS _DC _BIPOT cv Measured DC bipot current

VT _EIS_AC_S2 VS RE cw Measured AC S2 vs RE potential

VT_EIS _DC_S2 VS _RE cX Measured DC S2 vs RE potential

VT _EIS_AC_SE VS_S2 cy Measured AC SE vs S2 potential

VT _EIS _DC_SE VS _S2 cz Measured DC SE vs S2 potential

VT _CELL_SET_POTENTIAL da Set control value for WE potential

VT _CELL_SET_CURRENT db Set control value for WE current
VT_CELL_SET_FREQUENCY dc Set value for frequency

VT_CELL_SET_AMPLITUDE dd Setvalue for ac amplitude

VT_CHANNEL ea Thechannel

VT_TIME eb Time in seconds

VT_PIN_MSK ec Binary pin bitmask, indicating which pins are high / low
VT_TEMPERATURE ed CPU temperature in degrees Celsius

VT_COUNT ee Count (e.g. number of data points)
VT_TEMPERATURE_BOARD ef Board temperature in degrees Celsius

VT_DT_DE eg Time vs potential derivative, dt/dE in s/V.
VT_CURRENT_GENERIC1 ha Generic current 1

VT_CURRENT_GENERIC2 hb Generic current 2

VT_CURRENT_GENERIC3 hc Generic current 3

VT_CURRENT_GENERIC4 hd Generic current 4

VT_POTENTIAL_GENERIC1 ia Generic potential 1

VT_POTENTIAL_GENERIC2 ib Generic potential 2

VT_POTENTIAL_GENERIC3 ic Generic potential 3

Page | 195

£ PalmSens

MethodSCRIPT manual
Last document update: 2025-10-15

Name | D [Deecipin |

VT_POTENTIAL_GENERIC4 id Generic potential 4

VT_MISC_GENERIC1 ja Miscellaneous value 1 (reserved for user code)
VT_MISC_GENERIC2 jb Miscellaneous value 2 (reserved for user code)
VT_MISC_GENERIC3 je Miscellaneous value 3 (reserved for user code)
VT_MISC_GENERIC4 jd Miscellaneous value 4 (reserved for user code)
Page | 196

£ PalmSens

	MethodSCRIPT manual
	Table of Contents
	Chapter 1. Introduction
	1.1. Terminology

	Chapter 2. Features
	2.1. Implemented features
	2.2. Supported devices

	Chapter 3. Script format
	3.1. Relation between MethodSCRIPT and communication protocol

	Chapter 4. MethodSCRIPT variables
	4.1. MethodSCRIPT variables
	4.2. Script command variables
	4.3. Measurement data package variables
	4.3.1. Invalid Values

	Chapter 5. Interpreting measurement data packages
	5.1. Package format
	5.2. Variable sub package format
	5.3. Package parsing example

	Chapter 6. Measurement loop commands
	6.1. Introduction
	6.2. Measurement loop example
	6.3. Measurement loop output

	Chapter 7. Variable types
	Chapter 8. Script argument types
	8.1. var
	8.2. array
	8.2.1. Array Access Syntax

	8.3. literal
	8.4. VarType
	8.5. integer types (uint8, uint16, uint32)
	8.6. condition expressions
	8.7. string
	8.7.1. Interpolated strings

	8.8. Optional arguments

	Chapter 9. Optional arguments
	9.1. poly_we
	9.2. add_meas
	9.3. nscans
	9.4. nscans_avg
	9.5. nscans_equil
	9.6. meta_msk
	9.7. eis_tdd
	9.8. eis_opt
	9.9. eis_acdc
	9.10. eis_dual_tdd
	9.11. eis_dual_acdc
	9.12. ms_eis_acdc
	9.13. window
	9.14. filter_type
	9.15. ocp
	9.16. qr_log

	Chapter 10. Tags
	10.1. on_finished:

	Chapter 11. Error handling
	Chapter 12. PGStat modes
	12.1. PGStat mode off
	12.2. PGStat mode low speed
	12.3. PGStat mode high speed
	12.4. PGStat mode max range
	12.5. PGStat mode poly_we (deprecated)
	12.6. PGStat mode galvanostatic

	Chapter 13. Script command summary
	13.1. Command summary
	13.2. MethodSCRIPT version on instruments

	Chapter 14. Script command description
	14.1. Creating and manipulating variables
	14.1.1. var
	14.1.2. store_var
	14.1.3. copy_var

	14.2. Using arrays
	14.2.1. array
	14.2.2. array_set (deprecated)
	14.2.3. array_get (deprecated)
	14.2.4. subarray

	14.3. Mathematical operations
	14.3.1. add_var
	14.3.2. sub_var
	14.3.3. mul_var
	14.3.4. div_var
	14.3.5. mod_var
	14.3.6. pow_var
	14.3.7. log_var

	14.4. Logical operations
	14.4.1. bit_and_var
	14.4.2. bit_or_var
	14.4.3. bit_xor_var
	14.4.4. bit_lsl_var
	14.4.5. bit_lsr_var
	14.4.6. bit_inv_var

	14.5. Data type conversions
	14.5.1. int_to_float
	14.5.2. float_to_int
	14.5.3. alter_vartype

	14.6. Time, synchronization and hibernate
	14.6.1. rtc_get
	14.6.2. abort
	14.6.3. hibernate
	14.6.4. wait
	14.6.5. set_int
	14.6.6. await_int
	14.6.7. get_time
	14.6.8. timer_start
	14.6.9. timer_get
	14.6.10. set_channel_sync

	14.7. Conditional operations
	14.7.1. if, elseif, else, endif

	14.8. Loop constructs
	14.8.1. loop
	14.8.2. endloop
	14.8.3. breakloop

	14.9. Cell
	14.9.1. set_e
	14.9.2. set_i
	14.9.3. cell_on
	14.9.4. cell_off
	14.9.5. set_e_aux

	14.10. Measuring
	14.10.1. meas
	14.10.2. meas_ms_eis
	14.10.3. meas_fast_cv
	14.10.4. meas_fast_ca
	14.10.5. meas_scp

	14.11. Measurement loops
	14.11.1. set_scan_dir
	14.11.2. meas_loop_lsv
	14.11.3. meas_loop_acv
	14.11.4. meas_loop_lsp
	14.11.5. meas_loop_cv
	14.11.6. meas_loop_dpv
	14.11.7. meas_loop_swv
	14.11.8. meas_loop_npv
	14.11.9. meas_loop_ca
	14.11.10. meas_loop_ca_alt_mux
	14.11.11. meas_loop_cp
	14.11.12. meas_loop_cp_alt_mux
	14.11.13. meas_loop_pad
	14.11.14. meas_loop_ocp
	14.11.15. meas_loop_ocp_alt_mux
	14.11.16. meas_loop_eis
	14.11.17. meas_loop_eis_dual
	14.11.18. meas_loop_geis

	14.12. Script output
	14.12.1. pck_start
	14.12.2. pck_add
	14.12.3. pck_end
	14.12.4. file_open
	14.12.5. file_close
	14.12.6. set_script_output
	14.12.7. send_string

	14.13. Ranging
	14.13.1. set_pot_range (deprecated)
	14.13.2. set_cr (deprecated)
	14.13.3. set_range
	14.13.4. set_range_minmax
	14.13.5. set_autoranging
	14.13.6. trim_enable

	14.14. PGStat
	14.14.1. set_acquisition_frac
	14.14.2. set_acquisition_frac_autoadjust
	14.14.3. set_ir_comp
	14.14.4. set_pgstat_chan
	14.14.5. set_poly_we_mode (deprecated)
	14.14.6. set_pgstat_mode
	14.14.7. set_bipot_mode
	14.14.8. set_bipot_potential
	14.14.9. set_max_bandwidth

	14.15. GPIO
	14.15.1. set_gpio_cfg
	14.15.2. set_gpio_pullup
	14.15.3. set_gpio
	14.15.4. get_gpio
	14.15.5. set_gpio_msk
	14.15.6. get_gpio_msk

	14.16. I2C
	14.16.1. i2c_config
	14.16.2. i2c_write_byte
	14.16.3. i2c_read_byte
	14.16.4. i2c_write
	14.16.5. i2c_read
	14.16.6. i2c_write_read

	14.17. Multiplexers
	14.17.1. mux_config
	14.17.2. mux_get_channel_count
	14.17.3. mux_set_channel

	14.18. Misc
	14.18.1. notify_led
	14.18.2. smooth
	14.18.3. peak_detect
	14.18.4. beep
	14.18.5. battery_perc
	14.18.6. get_progress
	14.18.7. linear_fit
	14.18.8. mean
	14.18.9. qr_scan

	14.19. Display
	14.19.1. display_draw
	14.19.2. display_clear
	14.19.3. display_text
	14.19.4. display_icon
	14.19.5. display_progress
	14.19.6. display_btns
	14.19.7. display_inp_num
	14.19.8. display_scroll_add
	14.19.9. display_scroll_get
	14.19.10. display_keyboard

	Chapter 15. MethodSCRIPT examples
	15.1. EIS example
	15.2. LSV example
	15.3. SWV example
	15.4. Fast CV example
	15.5. Fast CA example
	15.6. SCP example
	15.7. I²C example — temperature sensor
	15.8. I²C example — real time clock
	15.9. I²C example — EEPROM

	Chapter 16. Document version changes
	Version 1.1 Rev 1
	Version 1.1 Rev 2
	Version 1.1 Rev 3
	Version 1.1 Rev 4
	Version 1.2 Rev 1
	Version 1.2 Rev 2
	Version 1.3 Rev 1
	Version 1.4 Rev 1
	Version 1.5 Rev 1
	Version 1.6 Rev 1
	Version 1.6 Rev 2
	Version 1.7 Rev 1
	Version 1.8 Rev 1

	Appendix A: Error codes
	Appendix B: Device-specific information
	B.1. PGStat mode properties
	B.1.1. Nexus
	B.1.2. EmStat4 HR
	B.1.3. EmStat4 LR
	B.1.4. EmStat Pico
	B.1.5. Sensit Wearable

	B.2. EIS properties
	B.3. Current ranges
	B.3.1. Nexus
	B.3.2. EmStat4 LR
	B.3.3. EmStat4 HR
	B.3.4. EmStat Pico
	B.3.5. Sensit Wearable

	B.4. Potential ranges
	B.5. Supported variable types for meas command
	B.6. Device I/O pin configurations
	B.7. Measurement channels

	Appendix C: Variable types

