$NEXUS^{TM}$

potentiostat / galvanostat / impedance analyzer

Contents

Nexus Overview	3
Nexus Features	4
Supported Techniques	
Measurement Specifications	
System Specifications	
EIS Accuracy Contour Plot	
Standard Nexus Kit	
Accessories	12
PSTrace: Software for Windows	13
The Nexus works with MethodSCRIPT TM	15
ntegrate Electrochemistry into Your Own Applications	16

> See for more information: www.palmsens.com/nexus

Engineered for Electrochemical Excellence

Analytical Chemistry

Energy Conversion

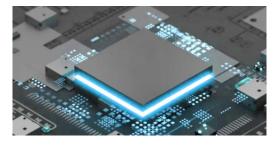
Corrosion Studies

Life Sciences

Your data always secured

The Nexus is equipped with internal storage memory of 32 GB. This allows for storing all your measurement data on-board seamlessly while the measurement is running. Your measurement even continues if the connection to the PC is lost. All internally stored measurements can be browsed and transferred back to the PC easily using PSTrace.

Nexus Features


Versatility

The Nexus offers 11 current ranges, from 100 pA (fA resolution) to 1 A. It supports a broad array of electrochemical techniques, including EIS up to 1 MHz. With a data acquisition time as fast as 1 µs and internal storage of 32 GB securing (very) long duration measurements, it enables a diverse range of electrochemical research applications.

Continuing PalmSens' tradition of delivering ultimate solutions for precise low-current measurements, Nexus offers an ultra-low-noise response that surpasses even our current portable devices.

High performance

The Nexus is built using the latest advancements in technology. A high-performance dual-core microcontroller allows for running very fast un-interrupted measurements while taking care of the data storage and throughput.

Connection options

Whether you want to make a direct USB connection to your laptop or want to control the Nexus via your local area network (LAN), the choice is yours. Both connection options will maintain the floating capabilities of the Nexus.

Dual EIS

The second sense electrode allows for monitoring the counter electrode potential. When used with EIS it can simultaneously measure at both the full- and half-cell impedance.

Bipotentiostat

The Nexus is equipped with built-in bipotentiostat capabilities for rotating ring-disc or scanning electrochemical microscopy experiments that require a second working electrode. This feature is optional and can be purchased later as a software upgrade.

MethodSCRIPT™

MethodSCRIPT by PalmSens, is a unique proprietary scripting language which is at the core of the latest generation of our potentiostats. While our software PSTrace generates the MethodSCRIPTs for you, you can also write your own MethodSCRIPTs, giving you full control over your experiment.

MethodSCRIPT comes with extensive documentation and code examples.

See page 15 for more information.

Supported Techniques

The Nexus supports the following electrochemical techniques:

Voltammetric techniques

Linear Sweep Voltammetry	LSV
Cyclic Voltammetry	CV
Fast Cyclic Voltammetry	FCV
AC Voltammetry	ACV

Pulsed techniques

Differential Pulse Voltammetry	DPV
Square Wave Voltammetry	SWV
Normal Pulse Voltammetry	NPV

These methods can all be used in their stripping modes which are applied for (ultra-) trace analysis.

Amperometric techniques

	Chronoamperometry	CA
-	Zero Resistance Amperometry	ZRA
-	Chronocoulometry	CC
•	MultiStep Amperometry	MA
-	Fast Amperometry	FAM
	Pulsed Amperometric Detection	PAD

Galvanostatic techniques

-	Linear Sweep Potentiometry	LSP
	Chronopotentiometry	CP
	MultiStep Potentiometry	MP
	Open Circuit Potentiometry	OCP
	Stripping Chronopotentiometry	SCP or PSA

Other

Mixed ModeM	1M
--	----

Potentiostatic and Galvanostatic
 Impedance spectroscopy
 EIS/GEIS

at fixed frequency or frequency scan vs

- o fixed potential or fixed current
- scanning potential or scanning current
- o time

Fast EIS/GEIS
 Very low interval fixed-frequency measurements

Bipotentiostat

The Bipotentiostat can be used with LSV, CV, CA, CC, MA and SWV.

Measurement Specifications

The following table shows limits for some technique-specific parameters.

	Parameter	Min	Max
All techniques	Online data acquisition (data points/s)	N/A	2500
(unless otherwise specified)	Step potential	76 μV	N/A
	N data points	3	20 million
NPV DPV	Pulse time	0.4 ms	N/A
• SWV	■ Frequency	N/A	1250 Hz
• LSV • CV	Scan rate	N/A	500 V/s (200 mV step)
	Scan rate	N/A	500 V/s (50 mV step)
• FCV	N averaged scans	1	65535
	■ N equilibration scans	0	65535
• PAD	■ Interval time	0.8 ms	N/A
-170	■ Pulse time	0.4 ms	N/A
• CA • CP	■ Interval time	0.4 ms	N/A
• OCP	- Run time	N/A	N/A
FANA	■ Interval time	1 µs	60 s
• FAM	N data points	3	50000
	■ N cycles	1	20000
• MM	■ N levels	1	255
• MA • MP	 Level switching overhead time 	~200 µs (typical)	N/A
	■ Interval time	0.4 ms	N/A
• Fast EIS	 Interval time between data points at fixed frequency 	~1 ms (typical)	N/A

MethodSCRIPT™ allows for developing custom techniques. See page 15 for more information.

System Specifications

General	
dc potential range	±10 V
- compliance voltage	±12 V
maximum current	±1.1 A

Potentiostat (controlled potential mode)		
applied dc-potential resolution	78 μV	
applied potential accuracy	\leq 0.1% or ±1 mV offset	
- current ranges	100 pA to 1 A (11 ranges)	
measured current accuracy	$< 0.1\%$ of measured current ± 10 pA (bias), $\pm 0.1\%$ of range (offset)	
measured current resolution	0.0038% of current range (3.8 fA on 100 pA range)	

Galvanostat (controlled current mode)		
- current ranges	1 nA to 1 A (10 ranges)	
- applied dc-current	±5 * range (< 10 mA) ±4.5 * range (10 mA & 100 mA) ±1 * range (1 A)	
- applied dc-current resolution	0.0038% of applied range	
- applied dc-current accuracy	$< 0.1\%$ of current ± 10 pA (bias), $\pm 0.1\%$ of range (offset)	
 potential ranges 	10 mV, 100 mV, 1 V	
measured dc-potential resolution	78 μV at ±10 V (1 V range) 7.8 μV at ±1 V (100 mV range) 0.78 μV at ±0.1 V (10 mV range) 78 nV at ±0.01 V (1 mV range)	
measured dc-potential accuracy	\leq 0.05% or ±1 mV (for E < ±9 V) \leq 0.2% (for E \geq ±9 V)	

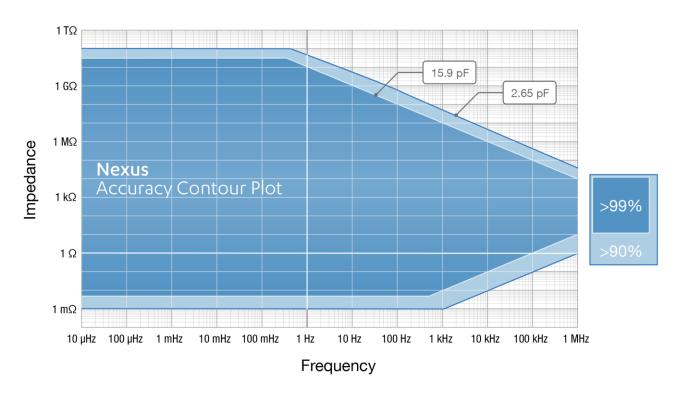
Optional: EIS (impedance measurements)	
• frequency range	10 μHz to 1 MHz
- ac-amplitude range	1 mV to 0.3 V rms, or 0.8 V p-p

Optional: GEIS (galvanostatic impedance measurements)	
frequency range	10 μHz to 1 MHz
ac-amplitude range	0.001 * range to 0.15 * range RMS (full range) 0.001 * range to 0.74 * range RMS for frequencies up to 1 kHz

Electrometer	
electrometer amplifier input	$>$ 10 T Ω // 10 pF
bandwidth	1 MHz

Optional: Bipotentiostat	
dc-potential range	±5 V
dc-potential resolution	153 μV (16-bit)
dc-offset error	≤ 0.1%, ±1 mV offset
- accuracy	≤ 0.1%
- current ranges	100 pA to 10 mA (9 ranges)
maximum measured current	±45 mA
- current resolution	0.0038% of current range
- current accuracy	≤ 0.1% current, ±0.1% range (offset)

iR Compensation module	
• method used for iR-drop compensation	Positive Feedback
 resolution of MDAC used for correcting potential 	16-bit
• max. compensated resistance	1 MOhm
 max. bandwidth with iR-drop compensation enabled 	10 kHz



Other		
electrode connections	2 mm banana pins for RE, WE, WE2, CE, Sense and GND. With the same specifications an additional Sense 2 (for monitoring potential at CE or half-cell).	
• housing	aluminium body: 20 x 21 x 4.5 cm	
• weight	1.8 kg	
• power	12 V DC external power supply	
- communication	ethernet and USB-C	
• internal storage space	32 GB (or >800 million datapoints)	

Auxiliary port (D-Sub 15)		
analog input	±10 V, 18-bit	
analog output	0 - 10 V, 16-bit (1 kOhm output impedance)	
- digital I/O	6x digital input/output (3.3 V)	
• i-out and E-out	raw output of current and potential E-out ±13 V (2.5 kOhm output impedance) i-out ±10 V at 1 nA – 100 mA current range ± 2 V at 1 A current (2.5 kOhm output impedance)	
• power	5 V-output (max. 150 mA)	

EIS Accuracy Contour Plot

Note

The accuracy contour plots were determined with an ac-amplitude of \leq 10 mV rms for most limits. The high impedance limit was determined using an ac-amplitude of 250 mV. The low impedances were measured in galvanostatic mode (GEIS) using a maximum amplitude of 0.25 A. The standard 1 meter cell cables were used. Please note that the true limits of an impedance measurement are influenced by all components in the system, e.g. connections, the environment, and the cell.

Standard Nexus Kit

A standard Nexus kit includes a carrying bag with:

- 100-240 VAC to 12 VDC power adapter
- 1 meter cell cable with 2 mm banana plugs, stackable connectors
- 1 m cable for using a second sense
- Crocodile clips for every lead (2 mm)
- Chassis ground cable with croc clip (4 mm)
- USB-C cable
- Ethernet cable
- Dummy cell
- USB stick with software
- Hardware Sync Link cable
- Operator's Manual
- Quick Start document
- Calibration report

Available configurations

The Nexus has optional support for EIS and bipotentiostat capabilities. The following table shows the available configurations with corresponding product codes:

	EIS capable	Bipotentiostat capable
C-NXS.F0.B0	NO	NO
C-NXS.F1.B0	YES	NO
C-NXS.F0.BP	NO	YES
C-NXS.F1.BP	YES	YES

Buy now, upgrade later

Every Nexus is fully equipped and tested. This allows for remote upgrading your device through software, without the need to send the instrument back to us

> Configure your ideal Nexus: www.palmsens.com/nexus

Accessories

Magnetic stirrer with switch dongle

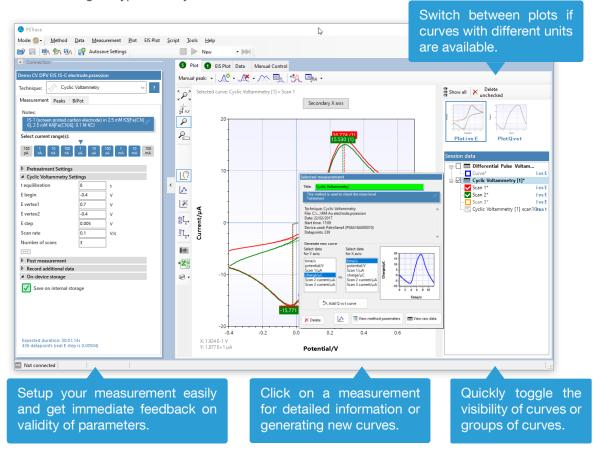
The magnetic stirrer controlled by the instrument is ideal for stripping analysis applications. The stirrer is switched on during the conditioning and deposition stages by means of the switch dongle.

TMP36 temperature sensor

This temperature sensor allows for monitoring of temperature during an experiment.

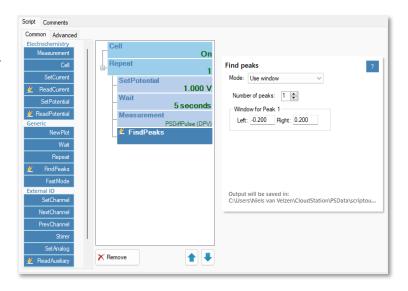
The TMP36 provides accuracies of $\pm 1^{\circ}$ C at $\pm 2^{\circ}$ C and $\pm 2^{\circ}$ C over the -40° C to $\pm 125^{\circ}$ C temperature range. The supply current runs well below 50 μ A, providing very low self-heating, less than 0.1°C in still air.

> See for more information: www.palmsens.com/accessories

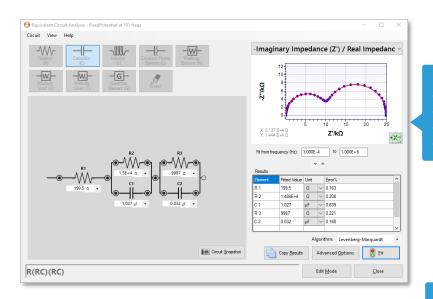


PSTrace: Software for Windows

Nexus operates seamlessly with PSTrace, a free software compatible with all PalmSens potentiostats. Additionally, all future updates are provided at no cost.


PSTrace is designed to get the most out of your instrument right after installation, without going through a long learning period. It has three modes:

- Scientific mode, which allows you to run all the techniques our instruments have to offer:
- 2. **Corrosion mode**, suitable for corrosion analysis with corrosionists nomenclature and specific curve operations;
- Analytical mode, designed for use with (bio)sensors and allows you to do
 concentration determinations. Extensive help files and prompts guide the user
 through a typical analysis.



Scripting

The intuitive script editor allows for easily creating a sequence of measurements or other tasks, by means of dragging and dropping actions in a list.

Use the graphical editor to draw the equivalent circuit or enter the CDC directly.

Corrosion mode for Tafel plot analysis and other corrosion data analysis.

Other functions in PSTrace

- Concentration determination
- Advanced peak search algorithms
- Open your data in Origin and Excel with one click of a button
- Save all available curves, measurement data and methods to a single file
- Load measurements from the internal storage
- Direct validation of method parameters

Integration with third party software

- Excel
- Origin
- Matlab
- ZView

| Securiosis | Securios | Aug | Aug

Minimum System Requirements

- Windows 7, 8, 10 or 11
- 1 GHz or faster 32-bit (x86) or 64-bit (x64) processor
- 2 GB RAM (32-bit) or 4 GB RAM (64-bit)
- Screen resolution of 1280 x 800 pixels

> See for more information: www.palmsens.com/pstrace

The Nexus works with MethodSCRIPT™

The MethodSCRIPTTM scripting language is designed to integrate our instruments and potentiostat (modules) effortlessly in your hardware setup, product, or experiment.

MethodSCRIPT™ gives you full control over your potentiostat. The simple script language is parsed on-board the instrument and allows for running all supported electrochemical techniques, making it easy to combine different measurements and other tasks.

MethodSCRIPT can be generated, edited, and executed in PSTrace.

MethodSCRIPT features include:

- Use of variables
- (Nested) loops and conditional logic support
- User code during a measurement iteration
- Exact timing control
- Simple math operations on variables (add, sub, mul, div)
- Digital I/O, for example for waiting for an external trigger
- Logging results to internal storage or external SD card
- Reading auxiliary values like pH or temperature
- and many more...

```
1 e
2 var c
      3 var p

4 #Select bandwidth of 40 for 10 points per second

5 set_max_bandwidth 40

6 #Set current range to 1 mA

7 set_range ba 1m

8 #Enable autoranging, between current of 100 uA and 1 mA

9 set_autoranging ba 100u 1m

10 #Turn cell on for measurements
    11 cell_on

12 #equilibrate at -0.5 V for 5 seconds, using a CA measurement

13 meas_loop_ca p c -500m 500m 5

14 pck_start

15 pck_add p

16 pck_add c

17 pck_end

18 endloop

18 molart ISV measurement from -0.5 V to 1.5 V, with steps of 16
      19 #Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV
    19 #Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV
20 #and a scan rate of 100 mV/s
21 meas_loop_lsv p c -500m 1500m 10m 100m
22 #Send package containing set potential and measured WE current.
23 pck_start
24 pck_add p
25 pck_add c
26 pck_end
27 #Abort if current exceeds 1200 uA
                     #Abort if current exceeds 1200 uA
      28 if c > 1200u
    28 if c > 1200u
29 abort
30 endloop
31 #Turn off cell when done or aborted
32 on_finished:
33 cell_off
34
Online support on MethodSCRIPT
```


Write your own software and integrate (generated) MethodSCRIPTs. No libraries needed.

MethodSCRIPT is parsed on-board the instrument. No DLLs or other type of code libraries are required for using MethodSCRIPT™

Code examples are available for:

> See for more information: www.palmsens.com/methodscript

Integrate Electrochemistry into Your Own Applications Seamless Instrument Control

- Access all PalmSens potentiostats (single- and multi-channel) through our SDKs.
- Full control of measurement techniques, data acquisition, and real-time analysis.

Cross-Platform Support

- Python SDK
 Script and automate experiments across platforms.
- Windows .NET SDK
 Easily integrate in C#, VB.NET, or any .NET language.
- Android & iOS SDKs
 Build mobile apps to run PalmSens instruments in the field.
- LabVIEW & MATLAB examples
 Quick start for engineers and researchers.

Accelerate Development

- Pre-built code sample
- Clear documentation & active support
- Sample apps to get started within minutes

PalmSens SDKs
put you in control
from the lab to the field

> See for more information: www.palmsens.com/dev

PalmSens BV has more than 50 distributors around the world.

Please contact us at **info@palmsens.com** or go to our website to get in touch with a distributor in your region.

Please do not hesitate to contact PalmSens for more details: info@palmsens.com

PalmSens BV The Netherlands www.palmsens.com

DISCLAIMER

Changes in specifications and typing errors reserved. Every effort has been made to ensure the accuracy of this document. However, no rights can be claimed by the contents of this document.

